-6-pen multipoint

- Roll or Z-fold chart
- 3-Color digital display
- User configurable, Universal, Isolated inputs
- Local or PC configuration
- Annotation
- Chart illumination
- 9.3 " overall depth behind panel
- Front access to pen zero/span adjust
- Up to 12 relay outputs
- Ready for immediate use.

The 4102 M is a low cost multipoint recorder, capable of plotting up to six input signals. Enclosed in a sheet steel case designed to meet the requirements of an industrial environment, the recorder is ideal for production or test purposes.

Display

The 4102 M has a high resolution, 3 -color vacuum fluorescent display with 15 mm high blue digits for process value and a single 8 mm green character for channel number. The display shows the process value for each of the input channels in turn, with indication of alarm status.

Small rear panel depth

The 4102 M has a total depth behind panel of 9.29 " allowing it to fit easily into the standard range of 9.84 " deep panels.

Input technology

Use of the very latest in Application Specific Integrated Circuit (ASIC) and Surface Mount technologies, gives the 4102 input circuitry high accuracy and stability. Inputs are fully universal accepting any mix of thermocouple, resistance thermometer, potentiometer, mV or mA inputs.

Configuration

Configuration can be carried out from the recorder keypad, or using a PC based configuration package.

Annotation

The 4102 M has annotation as standard, providing printing on the chart of scale endpoints, units, time and chart speed, thus avoiding the necessity for expensive, specially printed charts. Power-up, and on/offline messages are also automatically printed, and alarm on/off or event messages can be printed if required.

Chart Illumination

This option provides a fluorescent tube above the chart, making the traces significantly more visible, even in well lighted areas.

Operator interface

This consists of five membrane push-button switches, located adjacent to the display, allowing configuration of all the recorder functions. One password and three access levels are configurable to protect sensitive areas of the configuration.

Relay Outputs

Two alarm thresholds can be set up for each channel. With the relay output option fitted, these alarms are each assigned a relay which becomes de-energized when the current value lies above the high threshold or below the low threshold.

Three types of relay board are available: 3 x changeover, 4 x common/normally closed and 4 x common/normally open.

Model 4102M Specification Sheet

TECHNICAL SPECIFICATION (Input board)

General	
Input types	DC Volts, de millivolts, DC milliamps, Thermocouple, 2 / 3-wire RTD (Channel 1 can be RTD only if no other channels are thermocouple)
Input type mix	User configurable
Maximum number of inputs	6
Input ranges	$\begin{aligned} & -30 \text { to }+150 \mathrm{mV} ; \\ & -0.2 \text { to }+1 \mathrm{~V} ; \\ & -2 \text { to }+10 \mathrm{~V} \end{aligned}$
Termination	Edge connector / terminal block
Noise rejection (48 to 62 Hz)	Common mode: $>140 \mathrm{~dB}$ (channel to channel and channel to ground). Series mode: $>60 \mathrm{~dB}$.
Maximum common mode voltage	250 V continuous
Maximum series mode voltage	180 mV at lowest range; 12 V peak at highest range.
Isolation (dc to 65 Hz ; BS EN61010)	Installation cat.II; Pollution degree 2
Channel to channel:	300 V RMS or dc (double insulation)
Channel to common electronics:	300 V RMS or dc (double insulation)
Channel to ground:	300 V RMS or dc (basic insulation)
Dielectric strength (BS EN61010)	(One minute type tests)
Channel to channel:	2300 Vac
Channel to ground:	1350 Vac
Insulation resistance	$>10 \mathrm{M} \Omega$ at 500 V dc
Input impedance	150 mV and 1 V ranges: $>10 \mathrm{M} \Omega$; 10 V range: $68.8 \mathrm{k} \Omega$
Over voltage protection	50 V peak (150 V with attenuator)
Open circuit detection	$\pm 57 \mathrm{nA}$ max.
Recognition time	500 msec
Minimum break resistance	$10 \mathrm{M} \Omega$

DC Input ranges

Shunt/attenuator
Additional error due to shunt
Additional error due to attenuator
Performance

Low Range	High Range	Resolution	Maximum error (Instrument at $20^{\circ} \mathrm{C}$)	Worst case temperature performance
-30mV	150 mV	$5.5 \mu \mathrm{~V}$	0.084% input $+0.053 \%$ range	80ppm of input per ${ }^{\circ} \mathrm{C}$
-0.2V	1 V	$37 \mu \mathrm{~V}$	0.084% input $+0.037 \%$ range	80ppm of input per ${ }^{\circ} \mathrm{C}$
-2V	10 V	$370 \mu \mathrm{~V}$	0.275% input $+0.040 \%$ range	272ppm of input per ${ }^{\circ} \mathrm{C}$

Table 1 DC performance

Input board specification (Cont.)

Thermocouple data

Temperature scale	ITS 90
Linearization accuracy	0.05% of user selected span
Bias current	0.05 nA
Cold junction types	Off , internal, external
CJ error	$1^{\circ} \mathrm{C}$ max; instrument at $25^{\circ} \mathrm{C}$
CJ rejection ratio	$50: 1$ munimum
Upscale / downscale drive	High, low or none
Types and ranges	See table 2

T/C Type	Overall range $\left({ }^{\circ} \mathrm{C}\right)$	Standard	Max linearization errror
B	0 To +1820	IEC 584.1	$\begin{aligned} & 0 \text { to } 400^{\circ} \mathrm{C}: 1.7^{\circ} \\ & 400 \text { to } 1820^{\circ} \mathrm{C}: 0.03^{\circ} \mathrm{C} \end{aligned}$
C	0 to +2300	Hoskins	$0.12^{\circ} \mathrm{C}$
D	0 to +2495	Hoskins	$0.08^{\circ} \mathrm{C}$
E	-270 to +1000	IEC 584.1	$0.03{ }^{\circ} \mathrm{C}$
G2	-0 to +2315	Hoskins	$0.07^{\circ} \mathrm{C}$
J	-210 to +1200	IEC 584.1	$0.02{ }^{\circ} \mathrm{C}$
K	-270 to +1372	IEC 584.1	$0.04{ }^{\circ} \mathrm{C}$
L	-200 to +900	DIN43700:1985 (To IPTS68)	0.20
N	270 to +1300	IEC 584.1	$0.04{ }^{\circ} \mathrm{C}$
R	-50 to +1768	IEC 584.1	$0.04{ }^{\circ} \mathrm{C}$
S	-50 to +1768	IEC 584.1	$0.04{ }^{\circ} \mathrm{C}$
T	-270 to +400	IEC 584.1	$0.02{ }^{\circ} \mathrm{C}$
U	-200 to +600	DIN43710:1985	$0.08^{\circ} \mathrm{C}$
Ni/NiMo	0 to +1406	Ipsen	$0.14^{\circ} \mathrm{C}$
Plantinel	0 to +1370	Engelhard	$0.02{ }^{\circ} \mathrm{C}$

Table 2 Thermocouple types and ranges

Resistance inputs

Ranges (including lead resistance)
Linearization accuracy
Influence of lead resistance
Temperature scale
Resolution and performance
RTD types and ranges

0 to $600 \Omega, 0$ to $6 \mathrm{k} \Omega$
0.05% of user entered span
Error $=$ negligible; Mismatch $=1 \Omega / \Omega$
ITS90
See table 3
See table 4

Low Range	High Range	Resolution	Maximum error (Instrument at $20^{\circ} \mathrm{C}$)	Worst case temperature performance
0Ω	600Ω	$22 \mathrm{~m} \Omega$	0.045% input $+0.065 \%$ range	35 ppm of input per ${ }^{\circ} \mathrm{C}$
0Ω	6000Ω	$148 \mathrm{~m} \Omega$	0.049% input $+0.035 \%$ range	35 ppm of input per ${ }^{\circ} \mathrm{C}$

Table 3 Resolution and performance for resistance inputs

RTD Type	Overall range $\left({ }^{\circ} \mathrm{C}\right)$	Standard	Max linearization errror
JPT100	-220 to +630	JIS C1604:1989	$0.01^{\circ} \mathrm{C}$
Ni100	-60 to +250	DIN43760:1987	$0.01^{\circ} \mathrm{C}$
Ni120	-50 to +170	DIN43760:1987	$0.0^{\circ} \mathrm{C}$
P+100	-200 to +850	IEC 751	$0.01^{\circ} \mathrm{C}$
Pt100A	-200 to +600	Eurotherm Recorders SA	$0.09^{\circ} \mathrm{C}$
P+1000	-200 to +850	IEC 751	$0.01^{\circ} \mathrm{C}$

Table 4 RTD types and ranges

INSTALLATION CATEGORY II

The rated impulse voltage for equipment on nominal 230 V mains is 2500 V .

POLLUTION DEGREE 2
Normally, only non-conductive pollution occurs. Occasionally, however, a temporary conductivity caused by condensation shall be expected.

TECHNICAL SPECIFICATION (Recorder)

Table 5 Trace colors

Recorder Specification (Cont.)

Paper transport		
Type		Stepper motor driving sprocket tube
Chart speeds	Off, $5,10,20,30,60,120 \mathrm{~mm} / \mathrm{hr}$	
Chart type	Standard:	54.4 foot-fold
	Option:	104.99 roll
Transport accuracy		0.5 cm in 52.49 feet (approx. 0.03%)

Vacuum fluorescent display

Process value

Channel number
Alarm indication
Channel hold indication

Keypad
Four, blue, 15 mm high characters with minus sign as required
Single, green 8 mm high character
pair of red arrows for high and low alarms Red 'H' below channel number when channel hold in operation
5-key keypad for operator/configuration access

TECHNICAL SPECIFICATION (Options)

All isolation figures are Installation category II and Pollution degree 2

Relay outputs

Maximum switching power*
Maximum breaking current*
Maximum contact voltage*
Isolation (dc to 65 Hz ; BS EN61010)

Estimated life*

500VA or 60W
2 Amps within above power ratings
250 V within above power ratings
300 V RMS or dc contact-contact (double
insulation) and contact to ground (basic insulation)
30,000,000 operations

* With resistive loads. With inductive loads, derate according to the graph, in which: contact life $=$ resistive life \times F1 or F2 where F1 $=$ measured on representative examples and F2 $=$ typical values according to experience

Event inputs

Isolation (dc to 65Hz; BS EN61010)

Transmitter Power Supply

Output voltage
Isolation (dc to 65Hz; BS EN61010)

Channel to channel:	100 V RMS or dc (double insulation)
Channel to ground:	100 V RMS or dc (basic insulation)
	IP10

Option wiring

4 normally open relays option

4 normally closed relays option
Event input board option (alternative locations)

