

www.iac-sl.es

Danfoss VLT® Drives Catálogo de productos VLT®

Índice

VLT® AutomationDrive

Un concepto de convertidor de frecuencia único que abarca todas las aplicaciones, lo que supone una gran ventaja en la puesta en marcha, el funcionamiento y el mantenimiento del equipo. El VLT® AutomationDrive se presenta como versión básica (FC 301) y como versión avanzada altamente dinámica (FC 302), con funcionalidades adicionales para controlar motores asíncronos y de imanes permanentes PM.

PÁGINA 26

PÁGINA 28

PÁGINA 32

PÁGINA 34

PÁGINA 36

PÁGINA 38

VLT® Decentral Drive FCD 302

La nueva generación de convertidores de frecuencia descentralizados basados en la plataforma VLT® AutomationDrive FC 302. Combina las principales características de ambos productos en una envolvente completamente rediseñada, concebida para encajar mejor en un montaje directo en máquina.

VLT® HVAC Drive

El VLT® HVAC Drive, específico y compatible en todo el mundo, aúna flexibilidad y rendimiento en un paquete diseñado para minimizar los costes totales del sistema y el ciclo de vida en las aplicaciones HVAC. Diseñado para ofrecer la solución más eficiente tanto en los motores de magnetización permanente como en los motores asíncronos de los principales fabricantes, el VLT® HVAC drive es el convertidor de frecuencia líder para los sistemas de calefacción, ventilación y aire acondicionado.

VLT® Decentral Drive FCD 300

Un completo convertidor de frecuencia diseñado especialmente para el montaje descentralizado. Puede montarse en la máquina o la pared, cerca del motor. El diseño descentralizado elimina la necesidad de voluminosos armarios de control, reduciéndose considerablemente la necesidad de largos cables de motor apantallados.

VLT® Refrigeration Drive

Especialmente diseñado para las necesidades de las aplicaciones de refrigeración, incluidos compresores, evaporadores, condensadores, bombas y torres de refrigeración. Se adapta de forma eficiente a compresores, ventiladores y bombas. Configurar el convertidor de frecuencia es muy fácil gracias a la guía de configuración integrada, que ayuda al instalador a programar el variador de velocidad de forma eficiente y eficaz, mejorando la productividad del personal y el rendimiento de los procesos.

VLT® DriveMotor FCP 106

El VLT® DriveMotor FCP 106, con una amplia gama de características de bomba y ventilador integradas de serie, proporciona un control eficiente de los motores de 0,55 a 75 LW

Al montar el convertidor de frecuencia directamente en el motor, los propietarios tienen libertad para elegir el fabricante del motor y diseñar el sistema óptimo para su aplicación.

VLT® AQUA Drive

La solución ideal para las bombas y ventiladores de los modernos sistemas de agua y aguas residuales, con funciones avanzadas de protección de la aplicación. Disponible con control en cascada de hasta ocho bombas en modo de velocidad fija o en modo maestro-esclavo.

VLT® DriveMotor FCM 106

El VLT® DriveMotor FCM 106, con una amplia gama de funcionalidades integradas de serie para bombas y ventiladores, es una solución de control muy específica dentro de la gama de 0,55 a 7,5 kW, que facilita el ahorro de espacio. El convertidor de frecuencia se suministra de fábrica conectado a un motor de inducción estándar o a un motor de magnetización permanente de tamaño optimizado.

VLT® Lift Drive

La solución ideal para los ascensores de cable e hidráulicos. El convertidor de frecuencia está diseñado para ofrecer la comodidad necesaria. El concepto de alta eficiencia y de motor independiente nos ayuda a diferenciarnos de la competencia.

VLT® DriveMotor FCM 300

Solución integrada de convertidor-motor que combina un convertidor de frecuencia VLT® con un motor de inducción estándar de alta calidad en un solo producto. El convertidor de frecuencia se coloca en sustitución de la caja de terminales del motor, sin resultar más alto que la caja de terminales estándar ni más ancho ni largo que el motor.

VLT® 2800 Series

Convertidor de frecuencia versátil con la relación perfecta entre precio y rendimiento para aplicaciones industriales de hasta 18,5 kW.

VLT® OneGearDrive®

Motor síncrono trifásico de imanes permanentes y gran eficiencia acoplado a una caja de engranaje cónico. El VLT® OneGearDrive®, como parte de la gama VLT® FlexConcept® de Danfoss, es un sistema de convertidor con eficiencia energética que ayuda a optimizar la productividad de la planta y a reducir los gastos energéticos.

VLT® Micro Drive

Convertidor de frecuencia compacto de uso general para motores de CA de hasta 22 kW. Funciona perfectamente incluso en configuraciones de aplicaciones complejas, optimizando la eficiencia energética y el funcionamiento.

VLT® Integrated Servo Drive System ISD 410

Sistema de convertidor servo integrado de alto rendimiento basado en la tecnología de motores de imanes permanentes. El control de movimiento está integrado en el convertidor. El bus de comunicación es CAN. Se trata de un sistema para aplicaciones con un número variable de ejes, que permite una estructura de máquinas flexible en la industria alimentaria, de bebidas y envasado.

VLT® Soft Starter MCD 500

Una solución de arranque de motor completa con funciones avanzadas de arranque, parada y protección, control adaptativo de aceleración, conexión en triángulo interno, pantalla gráfica de cuatro líneas y diversos menús de ajuste de programas.

PÁGINA 54

26

PÁGINA

58

PÁGINA

PÁGINA 60

PÁGINA 62

PÁGINA 64

VLT® Common Mode Filters

Los filtros de modo común se colocan entre el convertidor de frecuencia y el motor. Se trata de núcleos nanocristalinos que atenúan el ruido de alta frecuencia en el cable del motor (apantallado o no) y reducen las corrientes de los cojinetes en el motor.

VLT® Compact Starter MCD 200

Gama de arrancadores suaves rentables y compactos, para aplicaciones en las que no se desea un arranque directo en línea. Gracias a su tamaño y funcionalidad, el MCD 200 resulta una alternativa idónea para limitar la corriente de arranque frente a otros métodos como configuraciones de estrella/triángulo.

VLT® Sine-Wave Filters

Los filtros senoidales se colocan entre el convertidor de frecuencia y el motor. Son filtros de modo diferencial paso bajo que eliminan la frecuencia de conmutación del convertidor y suavizan la tensión de salida fase a fase obteniendo una señal senoidal. Así se reduce la fatiga del aislamiento del motor y las corrientes en los cojinetes, y se elimina el ruido acústico de conmutación del motor.

VLT® Soft Start Controller MCD 100

Arrancador suave rentable y extremadamente compacto para motores de CA de 1,1 a 11 kW. Gracias a su exclusivo diseño semiconductor, es un producto para "ajustar y olvidarse".

VLT® dU/dt Filters

Los filtros dU/dt se colocan entre el convertidor de frecuencia y el motor. Son filtros de paso bajo de modo diferencial que reducen los picos de tensión de fase a fase en el terminal del motor y reducen el tiempo de subida a un nivel que disminuye la fatiga del aislamiento en los bobinados del motor. Los filtros dU/dt son más pequeños, pesan menos y tienen un coste menor que los filtros senoidales.

VLT® Low Harmonic Drive

Cumple con las exigencias de armónicos más estrictas en cualquier condición de carga o red. El convertidor de bajo nivel de armónicos VLT® de Danfoss es la primera solución que combina un filtro activo y un convertidor de frecuencia en un solo equipo. Regula de forma continua la supresión de armónicos de acuerdo con las condiciones de carga y red, sin afectar al motor conectado.

VLT® Motion Control Tool MCT 10

Con el software VLT® Motion Control Tool MCT 10 resulta perfecta para administrar todos los datos relacionados con el convertidor de frecuencia. Esta herramienta resulta útil en todas las fases del proyecto: programación, puesta en marcha, uso diario e, incluso, para fines de servicio y mantenimiento. Durante la puesta en marcha, el proyecto se puede preparar de antemano sin conexión y, más tarde, cargar cuando el sistema esté conectado.

12-pulse VLT® drive

Solución armónica sólida y rentable para el intervalo de mayor potencia. El convertidor de frecuencia de 12 pulsos VLT® de Danfoss ofrece armónicos reducidos en las exigentes aplicaciones industriales de más de 250 kW. Es además un convertidor de frecuencia variable de alto rendimiento fabricado con el mismo diseño modular que los populares convertidores de 6 pulsos VLT®.

VLT® Motion Control Tool MCT 31

Con el software VLT® Motion Control Tool MCT31, podrá determinar si los armónicos suponen un problema en su instalación, debido a la carga no lineal. MCT 31 estima las ventajas de añadir diversas soluciones de reducción de armónicos de la cartera de productos de Danfoss y calcula la distorsión de armónicos del sistema.

VLT® Advanced Active Filter AAF 006

Solución flexible y adaptada para la atenuación de armónicos centralizada o descentralizada. Los filtros activos avanzados de Danfoss pueden compensar convertidores de frecuencia individuales VLT® como una solución compacta integrada o pueden instalarse como una solución compacta independiente en un punto común de acoplamiento, para compensar varias cargas simultáneamente. Los filtros activos de Danfoss pueden funcionar a un nivel de tensión medio a través de un transformador reductor.

VLT® Energy Box

Con el software VLT[®] Energy Box, puede estimar el ahorro energético en una etapa temprana del proyecto. Más adelante, puede comparar las estimaciones fácilmente con el ahorro de energía y la reducción de la huella de carbono reales, utilizando los datos de energía y tendencias almacenados en el convertidor de frecuencia.

VLT® Advanced Harmonic Filter AHF 005/010

Los filtros armónicos avanzados de Danfoss han sido especialmente diseñados para adaptarse a los convertidores de frecuencia de Danfoss. La solución, disponible en dos variantes, AHF 005 o AHF 010, está conectada a un convertidor de frecuencia de Danfoss, reduciendo la distorsión de corriente armónica devuelta a la red eléctrica hasta el 5 % y el 10 % de la distorsión de corriente armónica total a plena carga.

Servicio VLT®: a su manera

El DrivePro™ es un eficaz programa de productividad adaptado para dar respuesta a sus necesidades específicas. Dispondrá de todas las instalaciones de servicio técnico VLT® necesarias, lo que reducirá el tiempo de parada y aumentará la productividad en su empresa.

VLT® AutomationDrive

El concepto de convertidor de frecuencia de primera calidad y compatible en todo el mundo, para un control excepcional de las aplicaciones con motor.

El VLT® AutomationDrive, diseñado para el control de velocidad variable de todo tipo de motores asíncronos y motores de imanes permanentes, en cualquier línea de producción o máquina industrial, contribuye al ahorro energético, aumenta la flexibilidad y optimiza los procesos.

Flexible y ampliable

El AutomationDrive, integrado en un concepto de diseño flexible y modular, ofrece todo tipo de prestaciones de serie desde el primer momento. Estas prestaciones pueden ampliarse con más opciones Plug-and-Play que ofrecen características adicionales, control de posicionamiento, buses de campo, funciones de seguridad como STO, SS1, SLS, SMS y SSM, protección contra sobrecarga del motor y otras.

Robusto y seguro

Los convertidores VLT AutomationDrive han demostrado ofrecer un buen rendimiento en todos los entornos industriales y con todas las tensiones de red, incluida la de 690 V. Las envolventes están disponibles hasta IP 66 (según el modelo), e incorporan filtros RFI y bobinas de choque CC integrados en todos los modelos, protegiendo las instalaciones al minimizar la distorsión armónica y las interferencias electromagnéticas.

Características	Ventajas
Fiable	Máximo tiempo de actividad
Temperatura ambiente de 50 °C sin reducción de potencia	Menor necesidad de refrigeración o sobredimensionamiento
Disponible en protecciones IP 00, 20, 21, 54, 55 y 66	Envolvente para todos los entornos
Resistente al desgaste por el uso	Bajo coste de mantenimiento
Refrigeración de canal posterior para bastidor D, E y F.	Prolongación de la vida útil de la electrónica
Fácil de usar	Ahorro en tiempo de puesta en marcha y coste de funcionamiento
Tecnología Plug-and-Play	Fácil de ampliar y reemplazar
Panel de control galardonado	Fácil de usar
Interfaz de usuario VLT® intuitiva	Ahorra tiempo
Conectores por resorte Cage-Clamp	Fácil de conectar
Idiomas intercambiables	Fácil de usar
Inteligente	
Sistemas de advertencia inteligentes	Advertencia antes de parada controlada
Controlador Smart Logic	Reduce la capacidad de PLC necesaria
Funciones de conexión avanzadas	Puesta en marcha sencilla
Parada segura	Cat. de seguridad 3, PL «d» (ISO 13849-1), Cat. de parada 0 (EN 60204-1)
STO: Desactivación de Par Seguro (IEC 61800-5-2)	SIL 2 (IEC 61508) SIL CL 2 (IEC 62061)
Gestión inteligente del calor	Gestión inteligente del calor

Todos los convertidores de frecuencia se prueban exhaustivamente en fábrica antes de su envío.

Los convertidores VLT Automation-Drive, fáciles de configurar y utilizar a través del sencillo panel de control gráfico, requieren muy poco mantenimiento una vez están en marcha. Por todo esto, son una solución de control líder en el mercado, que se amortiza rápidamente y ofrece un coste de propiedad muy competitivo.

Gama de potencias

3 x 200–240 V	0,25–37 kW
3 x 380-480/500 V	0,37-800 kW
3 x 525-600 V	0,75 kW–75 kW
3 x 525-690 V	1,1 kW-1,2 MW
Sobrecarga normal	1,5 kW-1,4 MW

Opciones de bus de campo

- VLT® PROFIBUS DP MCA 101
- VLT® DeviceNet MCA 104
- VLT® CanOpen MCA 105
- VLT® Profibus Conversor MCA 113
- VLT® Profibus Conversor MCA 114
- VLT® PROFINET MCA 120
- VLT® Ethernet/IP MCA 121
- VLT® Modbus TCP MCA 122
- VLT® POWERLINK MCA 123
- VLT® EtherCAT MCA 124
- VLT® DeviceNet Conversor MCA 194

Opciones de E/S y de realimentación

- Tarjeta E/S genérica VLT® MCB 101
- Tarjeta de encoder VLT® MCB 102
- Tarjeta de resolver VLT® MCB 103
- Tarjeta de relés VLT® MCB 105
- Tarjeta de alimentación auxiliar de 24V CC VLT® MCB 107
- Tarjeta de relé ampliada VLT® MCB 113
- Tarjeta de entrada de sensor VLT® MCB 114

Opciones de seguridad

- PLC de seguridad E/S VLT® MCB 108
- Tarjeta de termistor PTC VLT® MCB 112
- Opción de seguridad VLT® serie MCB 140
- Opción de seguridad VLT® serie MCB 150

Opciones de control de movimiento

- Controlador de movimiento VLT® MCO 305
- Controlador de sincronización VLT® MCO 350
- Controlador de posicionamiento VLT® MCO 351
- Controlador bobinadora central VLT® MCO 352

Opciones de alimentación

- Resistencias de freno VLT® MCE 101
- Filtros senoidales VLT® MCC 101
- Filtros dU/dt VLT® MCC 102
- Filtro de modo común VLT® MCC 105
- Filtros armónicos avanzados VLT® AHF 005/010

Otros accesorios

- Kit IP 21/NEMA 1 (convierte IP 20 en IP 21)
- Adaptador para PROFIBUS
- Conector Sub D9
- Placa de desacoplamiento para cables de bus de campo
- Cable USB para conexión a PC
- Opción de montaje en panel
- Kit de montaje del panel de LCP
- Soportes de montaje

Especificaciones

Tiempos de rampa

•						
Alimentación de red (L1, L2, L3)						
Tensión de alimentación	200–240 V ±10 % FC 301: 380–480 V ±10 % FC 302: 380–500 V ±10 %, 525–600 V ±10 % 525–690 V ±10 %					
Frecuencia de alimentación	50/60 Hz					
Factor de potencia real (λ)	0,92 a la carga nominal					
Factor de potencia de desplazamiento (cos φ) cercano a la unidad	(> 0,98)					
Conmutación en la alimentación de la entrada L1, L2, L3	Dos veces por minuto, como máximo					
Datos de salida (U, V, W)						
Tensión de salida	0-100 % de la tensión de alimentación					
Frecuencia de salida	FC 301: 0,2–590 Hz (0,25–75 kW) FC 302: 0–590 Hz (0,25–75 kW) 0–590 Hz (90–1200 kW) 0–300 Hz (modo de flujo)					
Conmutación en la salida	Ilimitada					

Nota: El convertidor puede suministrar el 160 % de intensidad durante 1 minuto. Se consigue una mayor clasificación de sobrecarga sobredimensionando el convertidor.

Entradas digitales	
Entradas digitales programables	FC 301: 4 (5) / FC 302: 4 (6)
Lógica	PNP o NPN
Nivel de tensión	0-24 V CC

1-3600 segundos

Nota: Es posible programar una o dos entradas dig	gitales como salida digital para FC 301/FC 302.
Entradas analógicas	
Entradas analógicas	2
Modos	Tensión o intensidad
Nivel de tensión	FC 301: de 0 a +10 V FC 302: de -10 a +10 V (escalable)
Nivel de intensidad	De 0/4 a 20 mA (escalable)
Entradas de pulsos/encoder	
Entradas de pulsos/encoder programables	FC 301: 1 / FC 302: 2
Nivel de tensión	De 0 a 24 V CC (lógica positiva PNP)
Salidas digitales*	
Salidas digitales / de pulsos programables	FC 301: 1 / FC 302: 2
Nivel de tensión en la salida digital / de frecuencia	0-24 V
Salidas analógicas*	
Salidas analógicas programables	1
Rango de intensidad	De 0/4 a 20 mA
Salidas de relé*	
Salidas de relé programables	FC 301: 1 / FC 302: 2
Longitud del cable	
Longitud máx. del cable de motor	FC 301: 50 m / FC 302: 150 m (apantallado/blindado) FC 301: 75 m / FC 302: 300 m (no apantallado/no blindado)

^{*}Se pueden añadir más entradas/salidas analógicas y digitales como opción.

- Opción de desconexión de red
- Extensión USB
- Puerta de enlace InterBus MCA 110
- Adaptador de opciones
- Módulo monitor de corriente de fuga RCMB20/RCMB35

Opción de chopper de frenado (IGBT) Limita la carga del circuito intermedio

en el caso de que el motor actúe como generador.

Opciones de alta potencia

- Parada de emergencia con relé de seguridad
- Parada de seguridad con relé de seguridad
- Filtros RFI
- Terminales NAMUR
- Dispositivo de corriente diferencial

- Monitor de resistencia de aislamiento
- Apantallamiento de red
- Terminales Regen

Consulte la Guía de selección de convertidores de frecuencia de alta potencia VLT® para conocer la gama completa de opciones.

VLT® AutomationDrive: continuación

Potencia e intensidad de salida

				T2:	200-24	10 V					T/	/T5 380-	480/5	00 V				
	k\	W	An	np.	20	21	55	99	Amp	. HO	Amp	. NO	00	20	21	54	55	99
FC 300	НО	NO	НО	NO	_ ⊆	_ €	_ €	<u>P</u>	≤440 V	>440 V	≤440 V	>440 V	<u></u>			<u>a</u>	<u>ا</u>	2
PK25	0,2	25	1,	,8														
PK37	0,	37	2	,4					1,3	1,2	1,3	1,2						
PK55	0,	55	3,	,5	A1*/A2		ιū	ιζi	1,8	1,6	1,8	1,6		7	7			
PK75	0,	75	4	,6	*	A2	A4/A5	A4/A5	2,4	2,1	2,4	2,1		A1*/A2	A1*/A2		5	
P1K1	1,	,1	6	,6			<	◂	3	2,7	3	2,7		< <	⋖		A4/A5	
P1K5	1,	,5	7,	,5					4,1	3,4	4,1	3,4					⋖	
P2K2	2,	,2	10),6	A2				5,6	4,8	5,6	4,8		A2	A2			
P3K0	3	3	12	2,5	А3	А3	A5	A5	7,2	6,3	7,2	6,3		72	7.2			
P3K7	3,	,7	16	5,7	A3	AS	A2	A3										
P4K0	4,	,0							10	8,2	10	8,2		A2	A2		A4/	A٤
P5K5	5,5	7,5	24,2	30,8	В3	B1	B1	B1	13	11	13	11		А3	А3		A5	,
P7K5	7,5	11	30,8	46,2	DO	DI	DI	DI	16	14,5	16	14,5		AS	AS		AS	,
P11K	11	15	46,2	59,4	D.4	B2	В2	B2	24	21	32	27		D.O.	D1		D1	
P15K	15	18	59,4	74,8	B4				32	27	37,5	34		B3	B1		B1	
P18K	18,5	22	74,8	88		C1	C1	C1	37,5	34	44	40			D2		D2	
P22K	22	30	88	115	C3				44	40	61	52		В4	B2		B2	
P30K	30	37	115	143					61	52	73	65						
P37K	37	45	143	170	C4	C2	C2	C2	73	65	90	80			C1		C1	
P45K	45	55							90	80	106	105		C3				
P55K	55	75							106	105	147	130						
P75K	75	90							147	130	177	160		C4	C2		C2	
N55K																		
N75K																		
N90K	90	110							177	160	212	190			D1h/	D1h/		
N110	110	132							212	190	260	240		D3h	D5h/	D5h/		
N132	132	160							260	240	315	302			D6h	D6h		
N160	160	200							315	302	395	361			D2h/	Dah/		
N200	200	250							395	361	480	443		D4h	D2h/	D2h/ D7h/		
N250	250	315							480	443	588	535		D-111	D8h	D8h		
N315	315	313							100	113	300	333						
P250	250	315							480	443	600	540						
P315	315	400							600	540	658	590						
P355	355	450							658	590	745	678	E2		E1	E1		
P400	400	500							695	678	800	730						
P450	450	500							800	730	880	780						
P500	500	560							880	780	990	890			23	က္က		
P560	560	630							990	890	1120	1050			F1/F3	F1/F3		
P630	630	710							1120	1050	1260	1160			-			
P710	710	800							1260	1160	1460	1380			4	4		
P800	800	1000							1460	1380	1720	1530			F2/F4	F2/F4		
P900	900	1000							1700	1300	1720	1330			4	Т.		
P1M0	1000	1200																
P1M0 P1M2	1200	1400																
P1M2 P1M4	1200	1400																
P1M4 P1M6	Consulte	a fábrica																

^{*} Para la selección de A1, consulte los tipos de envolvente en la posición 4 del código descriptivo (solo FC 301)

IP 00 / chasis	IP 20 / chasis	IP 21 / tipo 1	Con kit de actualización (disponible solo en Estados Unidos)	IP 54 / tipo 12	IP 55 / tipo 12	IP 66 / NEMA 4X
----------------	----------------	----------------	---	-----------------	-----------------	-----------------

	T6 525-600 V											T7 525-690 V								
	k'	W	Amp	. HO	Amp	. NO	20	21	55	99	Amp	o. HO	Amp	. NO	00	50	21	54	55	99
FC 300	НО	NO	≤550 V	>550 V	≤550 V	>550 V	_	_ ₽	<u>P</u>	IP (550 V	690 V	550 V	690 V	IP 00	IP 20	IP 21	<u>P</u>	<u>P</u>	IP 66
PK25	0,	25																		
PK37		37																		
PK55	0,	55																		
PK75	0,	75			1,8	1,7														
P1K1	1	,1			2,6	2,4					2,1	1,6								
P1K5	1,	,5			2,9	2,7	А3	А3	A5	A5	2,7	2,2				4.3	4.2			
P2K2	2	,2			4,1	3,9					3,9	3,2				A3	A3			
P3K0	3	3			5,2	4,9					4,9	4,5								
P3K7	3	,7																		
P4K0	4	,0			6,4	6,1					6,1	5,5								
P5K5	5,5	7,5			9,5	9	А3	А3	A5	A5	9	7,5				A3	А3			
P7K5	7,5	11			11,5	11					11	10	14	13						
P11K	11	15	19	18	23	22	D2	B1	B1	B1	14	13	19	18						
P15K	15	18	23	22	28	27	В3	ΒI	DΙ	БΙ	19	18	23	22			B2		B2	
P18K	18,5	22	28	27	36	34		R2	B2	B2	23	22	28	27		B4	02		DZ	
P22K	22	30	36	34	43	41	В4	B2	DΖ	DΖ	28	27	36	34						
P30K	30	37	43	41	54	52					36	34	43	41						
P37K	37	45	54	52	65	62	C3	C1	C1	C1	43	41	54	52		C3				
P45K	45	55	65	62	87	83	CS				54	52	65	62		C3	C2		C2	
P55K	55	75	87	83	105	100	CA	Ca	C	C2	65	62	87	83						
P75K	75	90	105	100	137	131	C4	C2	C2	(2	87	83	105	100						
N55K	55	75									76	73	90	86						
N75K	75	90									90	86	113	108		C)1h/	D1h/		
N90K	90	110									113	108	137	131		D3h <mark>D</mark>)5h/	D5h/		
N110	110	132									137	131	162	155			06h	D6h		
N132	132	160									162	155	201	192						
N160	160	200									201	192	253	242						
N200	200	250									253	242	303	290		D D4h <mark>D</mark>		D2h/		
N250	250	315									303	290	360	344	')/11/ 08h			
N315	315	400									360	344	418	400						
P250	250	315																		
P315	315	400																		
P355	355	450									395	380	470	450	E2		E1	E1		
P400	400	500									429	410	523	500	LZ		-"			
P450	450	500														_				
P500	500	560									523	500	596	570	E2		E1	E1		
P560	560	630									596	570	630	630						
P630	630	710									659	630	763	730				9		
P710	710	800									763	730	899	850			F1/F3	F1/F3		
P800	800	900									889	850	988	945			_			
P900	900	1000									988	945	1108	1060			4	4		
P1M0	1000	1200									1108	1060	1317	1260			F2/F4	F2/F4		
P1M2	1200	1400									1317	1260	1479	1415			-			

Dimensiones [mm]

	A1	A2	А3	A4	A5	B1	B2	В3	B4	C 1	C2	С3	C4	D1h	D2h	D3h	D4h	D5h	D6h	D7h	D8h	E1	E2	F1	F2	F3	F4
Alto	200	26	8	390	420	480	650	399	520	680	770	550	660	901	1107	909	1122	1324	1665	1978	2284	2000	1547	2280	2280	2280	2280
Ancho	75	90	130	200		242		165	230	308	370	308	370	325	420	250	350	32	25	42	20	600	585	1400	1804	1997	2401
Prof.	207	20)5	175	200	26	50	249	242	310	335	33	33	37	78	37	75	38	31	384	402	494	498	607	607	607	607
Alto+		37	' 5					475	670			755	950														
Ancho+		90	130					165	255			329	391														

 $\textbf{Nota:} \ Las\ dimensiones\ Alto\ y\ Ancho\ incluyen\ la\ placa\ trasera.\ Alto\ +\ y\ Ancho\ +\ , incluyen\ el\ kit\ de\ actualización\ IP.\ La\ profundidad\ es\ sin\ opciones.\ A\ o\ B\ para\ A2\ y\ A3.$

VLT® HVAC Drive

La serie de convertidores de frecuencia VLT® HVAC está disponible en una amplia gama de potencias diseñadas para todas las aplicaciones HVAC. Es un avanzado convertidor de frecuencia dedicado a HVAC.

de choque CC

Filtros EMC integrados

El VLT® HVAC es un convertidor HVAC completo y específico con inteligencia integrada. Todos los convertidores VLT® HVAC se basan en 25 años de experiencia e innovación.

El convertidor VLT® HVAC cuenta con un enorme número de funciones desarrolladas para satisfacer las diversas necesidades del negocio de HVAC. Todos los modelos son fáciles de usar y siguen el mismo principio de funcionamiento y diseño básicos. Una vez que conozca uno, los conocerá todos.

Es el compañero perfecto para bombas, ventiladores y compresores de edificios modernos equipados con soluciones cada vez más sofisticadas.

Gama de productos

3 x 200–240 V	1,1–45 kW
3 x 380-480 V	1,1–1000 kW
3 x 525-600 V	1,1–90 kW
3 x 525-690 V	1,1-1400 kW
Con 110 % de sobreco	araa de par

Clasificación de envolventes disponibles

lΡ	00	.335–630	ΚW
ΙP	20	1,1-400	kW
ΙP	21 (tipo 1)	1,1-1400	kW
ΙP	54 (tipo 12)	75-1400	kW
ΙP	55 (tipo 12)	1,1–90	kW
ΙP	66 (NEMA 4X interior)	1,1-90	kW

Características	Ventajas
Todo integrado, inversión económica	
Concepción modular del producto y una amplia gama de opciones	Baja inversión inicial, máxima flexibilidad, con posibilidad de mejoras posteriores
Funcionalidad de E/S HVAC dedicada a sensores de temperatura, etc.	Ahorro en conversión externa
Control E/S descentralizado mediante comunicación serie	Menor coste de cableado y ahorro de controlador externo de E/S
Amplia gama de protocolos HVAC para conectividad con controlador BMS	Menor necesidad de puertas de enlace adicionales
4 PID de ajuste automático	No se necesita ningún controlador PID externo
Controlador Smart Logic	No suele ser necesario el PLC
Reloj en tiempo real	Permite ajustes diarios y semanales
Funcionalidades integradas para ventilador, bomba y compresor	Ahorro de equipo externo de control y conversión
Funcionamiento en modo Incendio, detección de funcionamiento en seco, par constante, etc.	Protege el equipo y ahorra energía
Refrigeración de canal posterior para bastidores D, E y F	Prolongación de la vida útil de la electrónica.
Ahorro de energía y menor coste de funcionamiento	
Función de optimización automática de la energía, versión avanzada	Ahorro de entre un 5 % y un 15 % de energía
Control avanzado de la energía	Visión general del consumo energético
Funciones de ahorro de energía, como compensación de caudal, modo ir a dormir, etc.	Ahorro de energía
Robustez sin igual, máximo tiempo de funciona	miento
Una sola protección robusta	No requiere mantenimiento
Concepto único de refrigeración, sin circulación de aire ambiente sobre los componentes electrónicos	Funcionamiento sin problemas en entornos severos
Temperatura ambiente máxima de 50 °C sin reducción de potencia	No se necesita refrigeración externa ni sobredimensionamiento
Facilidad de uso, ahorro en tiempo de puesta en	marcha y coste de funcionamiento
Arranque Smart	Arranque rápido y preciso
Pantalla gráfica galardonada, 27 idiomas	Puesta en marcha y funcionamiento eficaces
Conexión USB Plug-and-Play	Herramientas de software para PC fáciles de usar
Organización mundial de asistencia HVAC	Servicio local y en todo el mundo
Bobinas de choque CC y filtros RFI integrados: si	n problemas de EMC
Filtro de armónicos integrado mediante bobina	Cables de alimentación pequeños. Cumplen

los requisitos de la normativa EN 61000-3-12 Cumplen la normativa EN 55011 Clase B, A1

o A2 y CEI 61800-3 Categorías C1, C2 y C3

Opciones

El convertidor admite la instalación de una amplia gama de opciones HVAC integradas:

Tarjeta E/S genérica VLT® MCB 101 3 entradas digitales, 2 salidas digitales, 1 salida de corriente analógica, 2 entradas de tensión analógicas.

Tarjeta de relés VLT® MCB 105 Añade 3 salidas de relé

E/S analógica VLT® MCB 109 3 entradas PT1000/Ni1000, 3 salidas de tensión analógicas y fuente de alimentación de reserva para reloj en tiempo real.

Tarjeta de alimentación auxiliar de 24V CC VLT® MCB 107

El suministro externo de 24 V CC permite alimentar la tarjeta de control y las tarjetas de opciones.

Tarjeta de entrada de sensor

Tarjeta de entrada de sensor para protección contra sobrecarga del motor con 2 o 3 entradas PT100 o PT1000 (tarjeta de entrada de sensor VLT® MCB 114).

Opción de chopper de frenado (IGBT)

Conectado a una resistencia de freno externa, el chopper de frenado integrado limita la carga en el circuito intermedio en los casos en que el motor actúa como un generador.

Opciones de alimentación

Hay disponible una amplia gama de opciones de alimentación externa para el convertidor VLT® HVAC en aplicaciones o redes críticas:

- Filtros de armónicos avanzados: para demandas críticas de distorsión armónica
- Filtros dU/dt: para las exigencias especiales de aislamiento y protección del motor
- Filtros senoidales

Herramientas HVAC de software para PC

- VLT® Motion Control Tool MCT 10: perfecta para la puesta en marcha y el mantenimiento del convertidor de frecuencia
- VLT® Energy Box: completa herramienta de análisis energético. Permite calcular el consumo de energía con y sin convertidor de frecuencia (el plazo de amortización del convertidor de frecuencia).

Especificaciones

Especincaciones							
Alimentación de red (L1, L2, L3)							
Tensión de alimentación	200-240 V ±10 % 380-480 V ±10 % 525-600 V ±10 % 525-690 V ±10 %						
Frecuencia de alimentación	50/60 Hz						
Factor de potencia de desplazamiento ($\cos \phi$) cercano a la unidad	(> 0,98)						
Conmutación en la alimentación de la entrada L1, L2, L3	1–2 veces/minuto						
Datos de salida (U, V, W)							
Tensión de salida	0-100 % de la tensión de alimentación						
Conmutación en la salida	Ilimitada						
Tiempos de rampa	1–3600 segundos						

Frecuencia de Salida	0-590 HZ
Entradas digitales	
Entradas digitales programables	6*
Lógica	PNP o NPN
Nivel de tensión	0-24 V CC

^{* 2} pueden utilizarse como salidas digitales.

Entradas de pulsos							
Entradas de pulsos programables	2*						
Nivel de tensión	0–24 V CC (lógica positiva PNP)						
Precisión de la entrada de pulsos	(0,1–110 kHz)						

r recision de la entrada de puisos	(0,1-110 KHZ)
* Utiliza algunas de las entradas digitales	
Entradas analógicas	
Entradas analógicas	2
Modos	Tensión o intensidad
Nivel de tensión	De 0 a +10 V (escalable)
Nivel de intensidad	De 0/4 a 20 mA (escalable)
Salidas analógicas	
Salidas analógicas programables	1
Rango de intensidad de las salidas analógicas	De 0/4 a 20 mA
Salidas de relé	
Salidas de relé programables	2 (240 V CA, 2 A y 400 V CA, 2 A)
Comunicación de bus de campo	
Drotocolos integrados do cavia.	Opcional: VLT® LonWorks MCA 108

rotocolos integrados de serie: rotocolo FC etasys N2 lodbus RTU ACnet integrado	Opcional: VLT* LonWorks MCA 108 VLT* BACnet MCA 109 VLT* DeviceNet MCA 104 VLT* PROFIBUS DP MCA 101 VLT* PROFIBUS DP MCA 120 VLT* EtherNet/IP MCA 121 VLT* Modbus TCP MCA 122
---	---

Función en línea para acceder al registro de energía de los convertidores de frecuencia.

VLT® Motion Control Tool MCT 31: herramienta de cálculo de armónicos

Opciones de alta potencia

- Parada de emergencia según IEC con relé de seguridad
- Parada de seguridad con relé de seguridad
- Filtros RFI
- Terminales NAMUR
- RCD
- IRM
- Apantallamiento de red
- Terminales Regen

Consulte la Guía de selección de convertidores de frecuencia de alta potencia VLT® para conocer la gama completa de opciones.

Convertidor HVAC VLT®: continuación

Potencia e intensidad de salida

		T2 200–240 V T4 380–480 V								T6 525-600 V T7 525-690 V																		
				Amp.						Aı	mp.		Amp.															
			IP 20	IP 21	IP 55	1P 66			IP 00	IP 20	IP 21	IP 54	IP 55	99		Ė	IP 20	IP 21	IP 55	IP 66			IP 00	IP 20	IP 21	IP 54	IP 55	IP 66
FC 102	kW	Amp.	В	В	В	В	≤440 V	>440 V	В	В	٩	В	_	IP (≤550 \	/ >550 V	В	_	В	₽	550 V	690 V	В	₽	_⊟	В	<u></u> ⊟	<u>P</u>
P1K1	1,1	6,6			15	5	3	2,7							2,6	2,4					2,1	1,6						
P1K5	1,5	7,5	A2	A2	A4/A5	A4/A5	4,1	3,4		A2	A2		A4/A5	A4/A5	2,9	2,7	ΔЗ	A3	Δ5	Α5	2,7	2,2		А3				
P2K2	2,2	10,6			<u> </u>	٩	5,6	4,8		/\2	/\2		A4	A4	4,1	3,9	, 13	,,,,	,5	,,,	3,9	3,2		,,,				
P3K0	3	12,5	А3	А3	A5	A5	7,2	6,3							5,2	4,9					4,9	4,5						
P3K7	3,7	16,7																										
P4K0	4,0						10	8,2		A2	A2		A4/	A5	6,4	6,1					6,1	5,5						
P5K5	5,5	24,2				١	13	11		А3	А3		A5	A5	9,5	9	А3	A3	A5	A5	9	7,5		А3				
P7K5	7,5	30,8	ВЗ	В1	B1	B1	16	14,5							11,5	11					11	10						
P11K	11	46,2				_	24	21						١	19	18					14	13					_	
P15K	15	59,4	В4	B2	B2	В2	32	27		В3	B1		B1	B1	23	22	В3	B1	B1	В1	19	18						
P18K	18	74,8				١	37,5	34							28	27					23	22			B2		B2	
P22K	22	88	C3	C1	C1	C1	44	40			B2		В2	В2	36	34	٠.	B2	B2	В2	28	27						
P30K	30	115					61	52		B4					43	41	B4				36	34						
P37K	37	143	C4	C2	C2	C2	73	65						١	54	52					43	41						
P45K	45	170					90	80		С3	C1		C1	C1	65	62	C3	C1	C1	C1	54	52		C3				
P55K	55						106	105							87	83					65	62			C2		C2	
P75K	75						147	130		C4	C2		C2	C2	105	100	C4	C2	C2	C2	87	83						
P90K	90						177	160							137	131					105	100						
N75K*	75																				90	86						
N90K*	90						212	100													113	108		Dal	D1h/			
N110	110						212	190		Dak		D1h/									137	131		D3h	D5h/ D6h	D5h/ D6h		
N132	132						260	240		υsn	D5h/ D6h	D5fi/ D6h									162	155			Don	Don		
N160 N200	160 200						315 395	302													201	192 242						
N250	250						480	361 443		D4h	D2h/ D7h/	D2h/									253 303	290			D2h/	D2h/		
N315	315						588	535		U411		D8h									360	344		D4h		D7h/		
N400	400						300	555			Don	Don										400			D8h	D8h		
P355	355						658	590													418	400						
P400	400						745	678	E2		E1	E1																
P450	450						800	730	LZ												470	450						
P500	500						880	780													523	500						
P560	560						990	890			er.	ξ.									596	570	E2		E1	E1		
P630	630						1120	1050			F1/F3	F1/F3									630	630						
P710	710						1260	1160			т.	<u> </u>									763	730						
P800	800						1460	1380			F2	/F4									889	850			F1/F3	F1/F3		
P900	900						1-100	1500			. 2/										988	945			F	됴		
P1M0	1000						1720	1530			F2/	F4									1108	1060						
P1M2	1200						1,20	1550			. 2/										1317	1260			F2/F4	F2/F4		
P1M4	1400																				1479	1415			F2	F2		
1 1171~	1700																				17/2	כודו					ı	

^{*} a 690 V

IP 00 / chasis

IP 20 / chasis

IP 21 / tipo 1

Con kit de actualización (disponible solo en Estados Unidos)

IP 54 / tipo 12

IP 55 / tipo 12

IP 66 / NEMA 4X

Dimensiones [mm]

	A2	А3	A4	A5	B1	B2	В3	В4	C 1	C2	С3	C4	D1h	D2h	D3h	D4h	D5h	D6h	D7h	D8h	E1	E2	F1	F2	F3	F4
Alto	26	58	390	420	480	650	399	520	680	770	550	660	901	1107	909	1122	1324	1665	1978	2284	2000	1547	2280	2280	2280	2280
Ancho	90	130	200		242		165	230	308	370	308	370	325	420	250	350	32	25	42	20	600	585	1400	1804	1997	2401
Prof.	20	05	175	200	26	50	249	242	310	335	33	33	37	78	37	75	38	31	384	402	494	498	607	607	607	607
Alto+	37	75					475	670			755	950														
Ancho+	90	130					165	255			329	391														

Nota: Las dimensiones Alto y Ancho incluyen la placa trasera. Alto+ y Ancho+, incluyen el kit de actualización IP. La profundidad es sin opciones. A o B para A2 y A3.

VLT® Refrigeration Drive

Dedicado

para la aplicación de refrigeración. Está especialmente diseñado para las necesidades de las aplicaciones de refrigeración, pero también puede controlar aplicaciones de bombas y ventiladores.

Independientemente de si quiere utilizar compresores, bombas o ventiladores, el convertidor de refrigeración VLT® FC 103 le permite ahorrar energía y prolongar la vida útil de sus componentes.

El control de velocidad aporta muchas ventajas a todas las piezas motorizadas en las aplicaciones de refrigeración. El convertidor de refrigeración VLT® permite que el usuario se beneficie del dispositivo de un modo muy sencillo, ahorrando energía y alargando la vida útil de los equipos esenciales.

Un convertidor para todo

El convertidor de refrigeración VLT® FC 103 abarca un intervalo de potencia de entre 1,1 y 315 kW. El convertidor dispone de diversas clases de protección para poder adaptarse a las necesidades de las distintas aplicaciones: bombas, ventiladores y compresores. Todas las aplicaciones y las magnitudes de potencia se pueden controlar y programar desde una misma interfaz de usuario.

Puesta en marcha sencilla

El convertidor de refrigeración VLT® FC 103 ofrece un asistente de configuración en el que se emplean los términos de refrigeración habituales en vez del lenguaje informático, para que los técnicos de mantenimiento y los instaladores puedan ocuparse de la instalación de forma fácil y rápida. Asimismo, el menú del asistente sirve de ayuda a los ingenieros en la puesta en marcha por si surge algún problema. El menú ayuda al ingeniero a localizar la avería y ofrece soluciones para arreglar y volver a poner en marcha el convertidor de frecuencia si algo va mal.

Características	Ventajas
Una sola protección robusta	No requiere mantenimiento
Clases de protección IP 20/21/55/66	Se adapta a todas las aplicaciones
Componentes electrónicos con revestimiento barnizado (clase 3C2 o 3C3)	Soporta entornos exigentes
Temperatura ambiente máxima de 50 °C sin reducción de potencia	No se necesita refrigeración externa ni sobre- dimensionamiento
Funciones de Software	Ventajas
Modo de reposo	Rendimiento optimo del sistema
Función termostato/presostato	Protección del sistema
Bus de campo (AKD LON, Modbus RTU, etc.)	Acepta todo tipo de controladores
Conversión velocidad-caudal	Ahorra gastos
Control día/noche	Reduce el desgaste y el consumo energético
Control avanzado de la energía	Visión general del consumo energético
Conversión de presión a temperatura	Ahorra gastos
Características del compresor	Ventajas
Par de arranque alto	Funciona con todo tipo de compresores
Optimización de PO	Rendimiento optimo del sistema
Inyección activada/desactivada	Mejora los procesos de refrigeración
Control de temperatura de descarga	Protege el compresor
Controlador de centrales	Ahorra energía y reduce el mantenimiento
Controlador de zona neutra	Gestión de zonas asimétricas
Características de la bomba	Ventajas
Control en cascada de bombas	Ahorra energía y reduce el mantenimiento
Protección de bomba seca y fin de curva	Protege la bomba
Compensación del caudal	Ahorro de energía
Características del ventilador	Ventajas
Detección de correa rota	Protege el sistema
Acciona motores de inducción en paralelo	Reduce el coste de la inversión
Función de optimización automática de energía (AEO)	Ahorro de energía
No presenta problemas de EMC	Ventajas
Filtros de choque CC integrados	Carga de armónicos baja en la red
Filtros EMC integrados	Sin necesidad de filtros externos

Convertidor de refrigeración VLT®: continuación

Gama de productos

3 x 200-240 V	1,1-45 kW
3 x 380-480 V	1,1-315 kW
3 x 525-600 V	1,1-90 kW
Con el 110 % de sobrecarga	de par

Clasificación de envolventes disponibles

315	kW
315	kW
315	kW
-90	kW
-90	kW
	315 315 -90

Barnizado estándar que ofrece una protección adicional en entornos agresivos.

Opciones

El convertidor de frecuencia VLT® FC 103 dispone de un gran abanico de opciones de refrigeración, montadas y probadas en fábrica o como opción Plug-and-Play para realizar mejoras posteriores.

Tarjeta E/S generica VLT® MCB 101

3 entradas digitales, 2 salidas digitales, 1 salida de corriente analógica, 2 entradas de tensión analógicas

Tarjeta de relés VLT® MCB 105 3 salidas de relé

Tarjeta E/S analógica VLT® MCB 109 3 entradas Pt1000/Ni1000, 3 salidas de tensión analógicas Búfer para reloj en tiempo real

Tarjeta de alimentación auxiliar de 24V CC VLT® MCB 107

El suministro externo de 24 V CC permite alimentar la tarjeta de control y las tarjetas de opciones.

Filtros

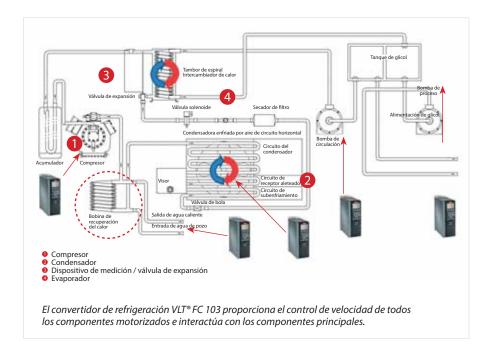
- Filtros de armónicos avanzados: para demandas críticas de distorsión armónica
- Filtros dU/dt: para las exigencias especiales de aislamiento y protección del motor
- Filtros senoidales: para motores silenciosos o exigencias especiales en aislamiento y protección del motor

Software para PC

VLT® Motion Control Tool MCT 10: perfecta para la puesta en marcha y el mantenimiento del convertidor de frecuencia

Especificaciones

Alimentación de red (L1, L2, L3)	
Tensión de alimentación	200-240 V ±10 % 380-480 V ±10 % 525-600 V ±10 %
Frecuencia de alimentación	50/60 Hz
Factor de potencia de desplazamiento (cos φ)	Cercano a la unidad (>0,98)
Conmutación en la alimentación de la entrada L1, L2, L3	1–2 veces/minuto
Datos de salida (U, V, W)	
Tensión de salida	0-100 % de la tensión de alimentación
Conmutación en la salida	Ilimitada
Conmutación en la salida Tiempos de rampa	Ilimitada 1–3600 s
Tiempos de rampa	1–3600 s
Tiempos de rampa Frecuencia de salida	1–3600 s
Tiempos de rampa Frecuencia de salida Entradas digitales	1–3600 s 0–590 Hz
Tiempos de rampa Frecuencia de salida Entradas digitales Entradas digitales programables	1–3600 s 0–590 Hz 6*


^{* 2} pueden utilizarse como salidas diaitales.

z paeden dinizarse como sandas digitales.						
Entradas analógicas						
Entradas analógicas	2					
Modos	Tensión o intensidad					
Nivel de tensión	0–10 V (escalable)					
Nivel de intensidad	De 0/4 a 20 mA (escalable)					

Mivel de intensidad	De 0/4 a 20 min (escalable)
Salidas de relé	
Salidas de relé programables	2 (240 V CA, 2 A y 400 V CA, 2 A)

Comunicación de bus de campo

Protocolos integrados de serie: Opcional:
Protocolo FC VLT® AK-LonWorks MCA 107
Modbus RTU VLT® PROFIBUS MCA 101
Metasys N2 VLT® PROFINET MCA 120

Potencia e intensidad de salida

		Т	2 200	-240	٧		T4 380–480 V				T6 525-600 V*								
							Amp.		b.				Amp.						
											_								
FC 103	kW	Amp.	IP 20	IP 21	IP 55	IP 66	≤440 V	>440 V	IP 20	IP 21	IP 54	IP 55	IP 66	≤550 V	>550 V	IP 20	IP 21	IP 55	IP 66
P1K1	1,1	6,6			2	5	3	2,7						2,6	2,4				
P1K5	1,5	7,5	A2	A2	A4/A5	A4/A5	4,1	3,4	4.2	۸.,		A4/A5	A4/A5	2,9	2,7	А3	۸.2	٨٥	۸۶
P2K2	2,2	10,6			⋖	⋖	5,6	4,8	A2	A2		A4/	A4/	4,1	3,9	A3	A3	A5	A5
P3K0	3	12,5	А3	A3	A5	A5	7,2	6,3						5,2	4,9				
P3K7	3,7	16,7	A3	A3	AS	AS													
P4K0	4,0						10	8,2	A2	A2		A4/	A5	6,4	6,1				
P5K5	5,5	24,2					13	11	А3	A3		A5	A5	9,5	9	А3	А3	A5	A5
P7K5	7,5	30,8	В3	B1	B1	В1	16	14,5	A3	A3		AS	AS	11,5	11				
P11K	11	46,2					24	21						19	18				
P15K	15	59,4	B4	B2	B2	B2	32	27	В3	B1		B1	В1	23	22	В3	B1	B1	B1
P18K	18	74,8	Б4				37,5	34						28	27				
P22K	22	88	C3	C1	C1	C1	44	40		B2		B2	B2	36	34		B2	B2	B2
P30K	30	115	CS				61	52	B4	DZ		DZ	DZ	43	41	B4	DZ	DZ	DZ
P37K	37	143	C4	C2	C2	C2	73	65						54	52				
P45K	45	170	C4	C2	C2	C2	90	80	С3	C1		C1	C1	65	62	C3	C1	C1	C1
P55K	55						106	105	C3					87	83	C3			
P75K	75						147	130	C4	C2		C2	C2	105	100	C4	C2	C2	C2
P90K	90						177	160	C4	C2		(2	C2	137	131	C4	C2	C2	CZ
N110	110						212	190											
N132	132						260	240	D3h	D1h	D1h								
N160	160						315	302											
N200	200						395	361											
N250	250						480	443	D4h	D2h	D2h								
N315	315						588	535											

^{*} Disponible solo en Estados Unidos

IP 00 /	chasis	IP 20 / chasis	IP 21 / tipo 1	Con kit de actualización (disponible solo en Estados Unidos)	IP 54 / tipo 12	IP 55 / tipo 12	IP 66 / NEMA 4X	1
---------	--------	----------------	----------------	---	-----------------	-----------------	-----------------	---

Dimensiones [mm]

	A2 A3	A4	A5	B1	B2	В3	B4	C 1	C2	C3	C4	D1h	D2h	D3h	D4h
Alto	268	390	420	480	650	399	520	680	770	550	660	901	1107	909	1122
Ancho	90 130	200		242		165	231	308	370	308	370	325	420	250	350
Prof.	205	175	200	26	60	248	242	310	335	33	33	37	78	37	75
Alto+	375					475	670			755	950				
Ancho+	90 130					165	255			329	391				

Nota: Las dimensiones Alto y Ancho incluyen la placa trasera. Alto+ y Ancho+, incluyen el kit de actualización IP. La profundidad es sin opciones. A o B para A2 y A3.

VLT® AQUA Drive

Dedicado

a las aplicaciones de agua. Gracias a unos ajustes del agua y la bomba de fácil configuración, se reduce el tiempo de instalación asegurando una mayor eficiencia energética y control del motor.

Convertidor de frecuencia optimizado para aplicaciones de agua y aguas residuales accionadas por motores de CA. Su sencilla configuración facilita la instalación y ofrece a los propietarios el máximo rendimiento con el mínimo coste de propiedad.

Indicación del tiempo de amortización

Con una gran variedad de funciones avanzadas de serie, ampliables con las opciones de mejora del rendimiento, el convertidor VLT® AQUA Drive es adecuado tanto para nuevos proyectos como para la modernización de los antiguos.

Configure el convertidor de frecuencia de forma fácil y rápida con el intuitivo menú rápido. Al recopilar los parámetros más importantes del agua y de la bomba en un solo lugar, se reduce considerablemente el riesgo de que la configuración no sea la correcta.

Disfrute al instante de su gran eficiencia, rápida rentabilidad y el menor coste total de propiedad para aplicaciones de agua y aguas residuales.

Gama de potencias

1 x 200–240 V CA:	1,1–22 kW
1 x 380-480 V CA:	7,5–37 kW
3 x 200-240 V CA:	0,25-45 kW
3 x 380-480 V CA:	0,37-1000 kW
3 x 525-600 V CA:	0,75–90 kW
3 x 525-690 V CA·	11–1400 kW

Características	Ventajas
Funciones específicas	
Detección de funcionamiento en seco	Protege la bomba
Compensación de caudal	Ahorro de energía
Rampas en 2 pasos (rampa inicial/final)	Protección de las bombas de pozos profundos
Comprobación cierre de válvula	Protección contra los golpes de ariete y ahorro de costes de instalación de las válvulas de cierre suave
Modo de llenado de las tuberías	Eliminación de los golpes de ariete
Alternancia del motor integrada	Funcionamiento en modo trabajo/reposo, reducción del coste
Modo de reposo	Ahorro de energía
Detección de situaciones de poco o ningún caudal	Protege la bomba
Detección de fin de curva de la bomba	Protección de la bomba, detección de fugas
Control en cascada de bombas	Menor coste de equipo
Controlador Smart Logic integrado	Con frecuencia hace prescindible el PLC
Barrido	Limpieza de la bomba preventiva/reactiva
Refrigeración de canal posterior para bastidor D, E y F.	Prolongación de la vida útil de la electrónica.
Ahorro de energía	Menor coste de funcionamiento
Rendimiento VLT® (98 %)	Ahorro de energía
Optimización automática de la energía (AEO)	Ahorro de energía del 3 % al 8 %
Ajuste automático de velocidades de conexión por etapas	Regulación de la conexión por etapas y ahorro de energía
Fiable	Máximo tiempo de actividad
Protecciones de IP 00 a IP 66 (según la potencia)	Elija la clase de protección que necesite
Todos los tamaños de potencia disponibles en las protecciones IP 54/55	Gran potencial de uso con la protección estándar
Protección por contraseña	Funcionamiento fiable
Interruptor de desconexión de la red	No es necesario un interruptor externo
Supresión RFI integrada, opcional	No se necesitan módulos externos
Parada de seguridad mediante un solo conductor (tecnología One Wire)	Funcionamiento seguro, menos cableado
Temperatura ambiente máxima de hasta 50 °C sin reducción de potencia (bastidor D 45 °C)	Menor necesidad de refrigeración
Fácil de usar	Ahorro de coste inicial y de funcionamiento
Un tipo de convertidor para toda la gama de potencias	Menor necesidad de formación
Interfaz de usuario intuitiva	Ahorro de tiempo
Reloj en tiempo real integrado	Menor coste de equipo
Diseño modular	Rápida instalación de opciones
Ajuste automático de controladores PI	Ahorro de tiempo

Control del rendimiento

Opciones

Amplíe la funcionalidad del convertidor de frecuencia con opciones integradas:

Tarjeta E/S genérica VLT® MCB 101

3 entradas digitales, 2 salidas digitales, 1 salida de corriente analógica, 2 entradas de tensión analógicas.

Controlador en cascada ampliado VLT® MCO 101 y controlador en cascada avanzado VLT® MCO 102

Mejore el control en cascada integrado para manejar más bombas con más eficiencia energética gracias al control de bomba maestro/auxiliar. Iguale la velocidad de las bombas que está usando y optimice la velocidad de la conexión por etapas automáticamente durante el funcionamiento. El tiempo de funcionamiento de todas las bombas se equilibra para distribuir uniformemente el desgaste.

Tarjeta de entrada de sensor VLT® MCB 114

Supervisa los PT100/PT1000 y protege los motores del sobrecalentamiento.

Tarjeta de termistor PTC MCB 112 VLT®

La MCB 112 está conectada a una parada de seguridad y protege el motor del sobrecalentamiento. Para su control, se aprobó un motor certificado a prueba de explosiones en una atmósfera potencialmente explosiva (ATEX) en zonas 1 + 2 (gas) y zonas 21 + 22 (polvo).

Tarjeta de alimentación auxiliar de 24V CC VLT® MCB 107

Opción de seguridad para mantener activo el sistema de control si se interrumpe la alimentación.

Disponible PCB barnizado

Para entornos agresivos, conforme a los niveles de IEC 61721–3–3, norma 3C2, opcional 3C3.

Opción de E/S analógica y relé

(Tarjeta de relé VLT® MCB 105, E/S analógica VLT® MCB 109)

Opciones de E/S flexibles, que añaden 3 relés o 3 entradas analógicas y 3 salidas analógicas respectivamente.

Opciones de alta potencia

Consulte la Guía de selección de convertidores de frecuencia de alta potencia VLT® para ver la lista completa.

Especificaciones

• • • • • • • • • • • • • • • • • • •	
Alimentación de red (L1, L2, L3)	
Tensión de alimentación	200-240 V ±10 %, 380-480 V ±10 %, 525-600 V ±10 %, 525-690 V ±10 %
Frecuencia de alimentación	50/60 Hz
Factor de potencia de desplazamiento (cos φ) cercano a la unidad	(> 0,98)
Factor de potencia real (λ)	≥ 0,9
Conmutación en la alimentación de la entrada L1, L2, L3	1–2 veces/minuto

Datos de salida (U, V, W)	
Tensión de salida	0–100 % de la tensión de red
Conmutación en la salida	Ilimitada
Tiempos de rampa	0,1–3600 s
Frecuencia de salida (depende de la potencia)	590 Hz

Nota: El convertidor VLT® AQUA puede suministrar el 110 % de intensidad durante 1 minuto. Se consigue una mayor clasificación de sobrecarga sobredimensionando el convertidor.

Entradas digitales	
Entradas digitales programables	6*
Lógica	PNP o NPN
Nivel de tensión	0-24 V CC

* Dos de las entradas pueden utilizarse como entradas digitales.

Entradas analógicas					
2					
Tensión o intensidad					
de –10 a +10 V (escalable)					
De 0/4 a 20 mA (escalable)					

Entradas de pulsos programables	2
Nivel de tensión	De 0 a 24 V CC (lógica positiva PNP)
Precisión de la entrada de pulsos	(0,1–110 kHz)

*Dos de las entradas digitales pueden utilizarse para las entradas de pulsos.

Dos de las entradas digitales paeden atilizarse para las entradas de paísos.				
Salidas analógicas				
Salidas analógicas programables	1			
Rango de intensidad de las salidas analógicas	0/4–20 mA			
Salidas de relé				
Salidas de relé programables	2 (240 V CA, 2 A y 400 V CA, 2 A)			

Comunicación de bus de campo

Protocolos FC y Modbus RTU integrados (opcional: Modbus TCP, Profibus, Profinet, DeviceNet y Ethernet IP)

Temperatura ambiente

Hasta 55 °C (50 °C sin reducción de potencia; bastidor D, 45 °C)

Opciones de alimentación

Elija de entre una amplia gama de opciones de alimentación externa para utilizar con nuestro convertidor en aplicaciones o redes críticas:

- Convertidor de frecuencia de bajos armónicos VLT°: reducción óptima de la distorsión armónica con filtro activo integra-
- Filtro de armónicos avanzado VLT®:

do.

para aplicaciones en las que es fundamental reducir la distorsión armónica.

- Filtro dU/dt VLT®: proporciona protección y aislamiento del motor.
- Filtro senoidal VLT®: para motores silenciosos.

Software para PC

- VLT® Motion Control Tool MCT 10 Ideal para la puesta en marcha y el mantenimiento del convertidor; incluye la programación guiada del controlador en cascada, el reloj en tiempo real, el controlador Smart Logic y el mantenimiento preventivo.
- VLT® Energy Box
 completa herramienta de análisis energético. Permite calcular
 el consumo de energía con y sin
 convertidor de frecuencia (el plazo
 de amortización del convertidor de
 frecuencia). Función en línea para
 acceder al registro de energía de
 los convertidores de frecuencia.
- VLT® Motion Control Tool MCT 31 Herramienta de cálculo de armónicos.

VLT® AQUA Drive: continuación

Potencia e intensidad de salida

		S2/T2 200-240 V			S4/T4 380-480 V																															
			N	lon	ofa	ásic	.0	T	rifá	isic	0		no					Trifá	sico				,	T6 5	25-	-60	0 V			1	7 5	25-6	90 V			
													s ico np.		An	np.							An	np.					An	np.						
			000	10 21	17	IP 55	IP 66	IP 20	IP 21	55	IP 66	≤440 V	>440 V	IP 21/55/66	≤440 V	>440 V	IP 00	IP 20	IP 21	IP 54	IP 55	IP 66	<550 V	>550 V	IP 20	IP 21	IP 55	IP 66	550 V	N 069	IP 00	IP 20	IP 21	IP 54	IP 55	10.66
C 202		Amp	. 🗅	= =	1	<u></u> ⊟	<u></u>	鱼	_	_	_	VΙ	À		VΙ	À	□	_ ⊟_	□ □	_ ⊟	<u></u>	□	Vİ	\ \ \	□□	_	<u> </u>	_⊟	5	9	□□	_	_	_	□	-
PK25 PK37	0,25	1,8 2,4													1,3	1,2																				
PK55	0,55	3,5													1,8	1,6																				
PK75	0,75	4,6								A4/A5	A4/A5				2,4	2,1					10	١,	1,8	1,7												
P1K1	1,1	6,6	Α	3 A	3 /	A5 <i>F</i>	۸5	A2	A2	Ą	Ą				3	2,7		A2	A2		A4/A5	A4/A5	2,6						2,1	1,6					A5	I
P1K5	1,5	7,5													4,1	3,4					¥	¥	2,9		А3	А3	A5	Α5	2,7	2,2		A 2×				
P2K2	2,2	10,6			1 .	21 5									5,6	4,8							4,1	3,9					3,9	3,2		A3*				
P3K0	3	12,5		В	1	31 E		ΛЭ	۸٥	A5	۸۶				7,2	6,3							5,2	4,9					4,9	4,5						
P3K7	3,7	16,7						ΑЭ	A3	A3	ΑJ										_															
P4K0	4,0														10	8,2		A2	A2		A4/	A5	6,4						6,1	5,5						
P5K5	5,5	24,2		_	_	31 E									13	11		A3	A3		A5	A5	9,5	9	А3	А3	A5	A5	9,0	7,5		A3*			A5	1
P7K5	7,5	30,8		B	2 E	32 E	32	B3	B1	B1	B1	33	30		16	14,5						_	11,5					Н	11	10						
P11K	11	46,2		-	2	Ca d	~4		D.0	D2	D2	48	41	B2	24	21		D2	D4		D1		19	18		D4	D4	D4	14	13						
P15K	15	59,4		C	l (C1 (-1	В4	B2	B2		27.5	24	C1	32	27		В3	B1		RI	B1	23		В3	RI	RI	RI	19	18			DO		D2	
P18K P22K	18	74,8 88		C	2 (C2 (- n		C1	C1		37,5	34	CI	37,5	34							28	27					23	22 27			B2		B2	
22K 230K	30	115		C.	2	(-2	C3	Ci	C1	CI				61	40 52		B4	B2		В2	B2	36 43	34	B4	В2	B2	В2	28 36	34						ı
30K 237K	37	143										151	135	C	73	65		D4					54	52	D4				43	41						
97K	45	170						C4	C2	C2	C2		155	CZ	90	80			C1		C1	C1	65	62		C1	C1	C1	54	52						
P55K	55	., 0													106	105		C3	, .				87	83	C3		.	-	65	62		C3	C2		C2	
P75K	75														147	130							105						87	83						
90K	90														177	160		C4	C2		C2	C2	137	131	C4	C2	C2	C2	105	100						
N75K	75																												90	86						
190K	90																												113	108			D1h/	D1h	,	
N110	110														212	190			D1h/	D1h	/								137	131		D3h	D5h/	D5h	1	
N132	132														260			D3h	D5h/	D5h	/								162	155			D6h	D6n		
V160	160															302			ווסט	D6h									201	192						
1200	200														395	361				D2h									253	242			D2h/	Dak		
N250	250														480			D4h	D7h/ D8h	D7h, D8h									303			D4h	D7h/	D7h	/	
N315	315														600	540				Don									360				D8h	D8h		
V400	400														600	E40													418	400						
P315 P355	315 355														600	590																				
2400	400															678			E1	E1																
P450	450															730													470	450						
2500	500														880														523							
2560	560														990				£	£									596				E1	E1		
P630	630															1050			F1/F3	F1/F3									630							
P710	710														1260	1160													763	730			8	m		
P800	800														1460	1380			F2	F4									889	850			F1/F3	F1/F3		
900	900																												988	945			-			
	1000														1720	1530			F2	F4									1108				4	4		
P1M2	1200																												1317				F2/F4	F2/F4		
P1M4	1400																												1479	1415	5		_	Ť		

^{*} Lanzamiento previsto: 1.er trimestre de 2013

IP 00 / chasis	IP 20 / chasis	IP 21 / tipo 1	Con kit de actualización (disponible solo en Estados Unidos)	IP 54 / tipo 12	IP 55 / tipo 12	IP 66 / NEMA 4X
----------------	----------------	----------------	---	-----------------	-----------------	-----------------

Dimensiones [mm]

	A2 /	43	A4	A5	B1	B2	В3	В4	C 1	C2	С3	C4	D1h	D2h	D3h	D4h	D5h	D6h	D7h	D8h	E1	E2	F1	F2	F3	F4
Alto	268		390	420	480	650	399	520	680	770	550	660	901	1107	909	1122	1324	1665	1978	2284	2000	1547	2280	2280	2280	2280
Ancho	90 1	30	200		242		165	230	308	370	308	370	325	420	250	350	32	25	42	20	600	585	1400	1804	1997	2401
Prof.	205		175	200	26	50	249	242	310	335	33	33	37	78	37	75	38	31	384	402	494	498	607	607	607	607
Alto+	375						475	670			755	950														
Ancho+	90 1	30					165	255			329	391														

Nota: Las dimensiones Alto y Ancho incluyen la placa trasera. Alto+ y Ancho+, incluyen el kit de actualización IP. La profundidad es sin opciones. A o B para A2 y A3.

Resumen de opciones

Un resumen de las opciones disponibles para los convertidores VLT® HVAC Drive, VLT® Refrigeration Drive, VLT® AQUA Drive, VLT® AutomationDrive, VLT® Lift Drive y VLT® Decentral Drive.

			\u_=0 D C4		\ // TO .			\ // 	
	Opciones	VLT® HVAC Drive	VLT® Refrigeration Drive	VLT® AQUA Drive	VLT® Au Dr	tomation rive	VLT® Lift Drive		ecentral ive
	Operation	FC 102	FC 103	FC 202	FC 301	FC 302	LD 302	FCD 300	FCD 302
	VLT® PROFIBUS DP MCA 101		•	•	•	-		-	•
	VLT® PROFINET MCA 120		•		•	-			•
	VLT® DeviceNet MCA 104				•				
	VLT® DeviceNet Conversor MCA 194					-			
	VLT® EtherNet/IP MCA 121				•	•			
	VLT® CANopen MCA 105				•	•			
Ranu-	VLT® EtherCAT MCA 124					•			•
ra A	VLT® POWERLINK MCA 123				•	•			•
	VLT® LonWorks MCA 108								
	VLT® BACnet MCA 109								
	VLT® Modbus TCP MCA 122								
	VLT® PROFIBUS Conversor MCA 113					•			
	VLT® PROFIBUS Conversor MCA 114								
	VLT® AK-LonWorks MCA 107								
	Tarjeta E/S genérica VLT® MCB 101								
	Tarjeta de encoder VLT® MCB 102				•	•			
	Tarjeta de resolver VLT® MCB 103					•			
	Tarjeta de relés VLT® MCB 105				•	•			
	PLC de seguridad E/S VLT® MCB 108					•			
Ranu-	Tarjeta E/S analógica VLT® MCB 109	•							
ra B	Tarjeta de termistor PTC VLT® MCB 112					•			
	Tarjeta de entrada de sensor VLT® MCB 114				•	•			
	Opción de seguridad VLT® serie MCB 140								
	Opción de seguridad VLT® serie MCB 150					•			
	Controlador en cascada ampliado VLT® MCO 101								
	Controlador en cascada avanzado VLT® MCO 102								
	Control de movimiento VLT® MCO 305					•			
Ranu-	Tarjeta de relé ampliada VLT® MCB 113				•	-			
ra C	Controlador de sincronización VLT® MCO 350				•	-			
	Controlador de posicionamiento VLT® MCO 351				•	•			
	Controlador VLT® Lift MCO 361								
Ranu- ra D	Tarjeta de alimentación auxiliar de 24 V VLT® MCB 107		•	•	•	•			

VLT® Lift Drive

2,1 millones

de ciclos de carga es la vida útil mínima del convertidor de frecuencia VLT® Lift Drive a una frecuencia de 16 kHz y 45 °C de temperatura ambiente.

Diseñado específicamente para ascensores, ofrece fiabilidad y una excelente comodidad en el recorrido. Funciona sin contactores de motor y puede ponerse en marcha en menos de 10 minutos.

Diseñado específicamente para ascensores

El diseño compacto y robusto del VLT® Lift Drive está optimizado para simplificar la instalación. Con sus características integradas, ofrece un funcionamiento fiable, un recorrido suave y un coste total bajo a lo largo de su extensa vida útil.

Puesta en marcha sencilla con software personalizado

La configuración y el mantenimiento son fáciles de realizar gracias al software dedicado del convertidor de frecuencia, al que se accede mediante el panel gráfico VLT® LCP 102. Las lecturas son sencillas y claras, incluida la función de osciloscopio, que presenta datos analógicos y digitales.

Con parámetros adaptados especialmente para los ascensores, en todos los ajustes se emplea la jerga habitual en este campo. De este modo, los propietarios pueden ocuparse por su cuenta de la configuración y el mantenimiento de los ascensores sin necesidad de especialistas y en el menor tiempo posible.

Características	Ventajas
Tecnología de parada de seguridad patentada	 Ahorro de espacio Reducción de costes de materiales Sin ruido de conmutación Mayor fiabilidad
Clasificación de protección IP 20, 21, 55 o 66	 Opciones de instalación flexibles Montaje del convertidor de frecuencia fuera del alojamiento del ascensor
Funcionalidad específica para ascensores	 Mayor comodidad durante el arranque, el funcionamiento y la entrada y salida de pasajeros Eje del ascensor muy poco ruidoso Reducción de los costes totales del sistema
Filtro RFI y bobinas de CC integrados	 Requiere menos espacio Reduce los costes de instalación Fácil cumplimiento de las normas de armónicos y EMC

Funcionamiento sin contactores de motor

Gracias a la función de parada de seguridad patentada, no es necesario usar contactores de motor, lo que aumenta la fiabilidad de la instalación del ascensor, que es al menos tan segura como las soluciones con contactores de motor.

Con el filtro RFI y las bobinas de CC integrados, se ahorra el gran coste que supondría instalar componentes externos. Así, requiere menos espacio y evita un complejo cableado que cumpla con la normativa de EMC.

Gama de potencias

■ 4–55 kW (380–400 V) IP 20/21/55

Fiabilidad en todos los entornos

El VLT® Lift Drive se puede instalar en condiciones ambientales exigentes que queden fuera del control de las diversas clases de envolventes y protecciones disponibles. Por ejemplo, el VLT® Lift Drive cuenta con una característica única: cuando la temperatura sube, el convertidor de frecuencia mantiene la intensidad de salida para que solamente se reduzca la frecuencia de conmutación.

Especificaciones

Alimentación de red (L1, L2, L3) Tensión de alimentación 380–400 V ±10 % Motor y realimentación del motor

Motor y realimentación del motor	
Perfil de carga y vida útil estimada	2,1 millones de ciclos de carga
Tipos de realimentación del motor compatibles	Incremental: 5 V TTL (RS422) Incremental: 1 Vpp SinCos Absoluto: ENDAT, Hiperface

Acústica	
Ruido acústico	55 dB
Frecuencia de conmutación máxima	16 kHz

Entorno	
Temperatura de funcionamiento	De 0 a 45 °C
Protección de alojamiento IP	IP 20/21, IP 55
Filtro RFI	Incluido de serie

Potencia de salida	4 kW	5,5	kW	7,5	kW	11	kW	15 kW	18	kW	22 kW	30	kW	37 kW	45 kW	55	kW
Clase IP	IP 20	IP 20	IP 55	IP 20	IP 55	IP 20	IP 55	IP 20	IP 20	IP 55	IP 20	IP 20	IP 55	IP 20	IP 20	IP 20	IP 55
Tamaño del bastidor	A2	А3	A5	А3	A5	В3	B1	B4	B4	B2	B4	C3	C1	C4	C4	C4	C2
Tensión [V]									400 V								
Intensidad de salida continua 100 %	10	1	3	1	6	26	21	35	44	35	51	60	50	75	90	110	98
Sobrecarga 6 s / 60 s [A]	16	20),8	26	5,6	46,8/ 41,6	33,6	60/ 56	74,4	56	91,3/ 81,6	180/ 90	75	135/ 112,5	162/ 135	198/ 165	147
Intensidad a 16 kHz [A]	10	1	3	1	6	No disponi- ble	No disponi- ble	32	35	35	44	No disponi- ble	50	No disponi- ble	No disponi- ble	No disponi- ble	No disponi- ble
Intensidad a 14 kHz [A]	10	1	3	1	6	No disponi- ble	No disponi- ble	32	35	35	44	No disponi- ble	50	No disponi- ble	No disponi- ble	No disponi- ble	No disponi- ble
Intensidad a 12 kHz [A]	10	1	3	1	6	21	21	35	44	35	51	60	50	75	83	98	98
Intensidad a 10 kHz [A]	10	1	3	1	6	26	21	35	44	35	51	60	50	75	90	98	98
Intensidad a 8 kHz [A]	10	1	3	1	6	26	21	35	44	35	51	60	50	75	90	110	98
Temperatura ambiente									45 °C								
Ciclo de trabajo									50 %								

VLT® 2800 Series

18,5 kW

de tamaño máximo del motor. Control de eficiencia energética de una gran variedad de aplicaciones, con chopper de freno integrado y placa de circuito impreso barnizada de serie.

El convertidor de frecuencia versátil con una relación perfecta entre precio y rendimiento en una gran variedad de aplicaciones industriales.

La serie VLT® 2800 está diseñada para adaptarse a las necesidades de una gran variedad de aplicaciones generales de convertidores de frecuencia de hasta 18,5 kW.

A lo largo de los años ha demostrado su valor a un gran número de clientes, dando como resultado una gran base de equipos instalados en todo el mundo.

El VLT® 2800 se entrega con un chopper de freno instalado de fábrica y placas de circuito impreso barnizadas, para mejorar la protección de serie.

Gama de potencias

1/3 x 200–240 V	0,37–3,7 kW
3 x 380-480 V	0,55-18,5 kW

Con un 160 % de par de sobrecarga (sobrecarga normal)

Características	Ventajas
Fácil de integrar y utilizar	
Menú rápido	Arranque fácil y acceso rápido a los parámetros
Ajuste automático del motor	Garantiza una unión perfecta del VLT 2800 y el motor, y un aumento del rendimiento
Controlador PID	Control de proceso optimizado
Comunicación de bus de campo	Control y supervisión desde PLC o PC
Chopper de freno integrado	Función estándar que aumenta la flexibilidad. Evita tener que decidir por adelantado si se necesita un chopper de freno
Especialización en aplicaciones	
Parada precisa con contador	El convertidor de frecuencia cuenta los pulsos y se detiene de forma segura una vez alcanzado el número programado.
Función de parada precisa	Aumenta el rendimiento en las aplicaciones de envasado.
Protección en caso de funcionamiento en seco	Protege la bomba en las situaciones de funcionamiento en seco.
Modo de reposo mejorado	Excelente control para apagar el convertidor de frecuencia si el caudal es bajo
Modo de llenado de las tuberías	Evita los golpes de ariete en las aplicaciones de bomba
Flexible y robusto	
Temperatura ambiente máxima de 45 °C sin reducción de potencia	No necesita refrigeración externa ni sobredimensionamiento
Montaje con disipador de calor ventilado	Montaje flexible, incluido montaje horizontal
Montaje lado a lado	Ahorra espacio en las instalaciones
Filtro RFI integrado	Cumple las normas EMC EN55011 1A
Placas de circuito impreso barnizadas	Prestación de serie que aumenta la protección de los elementos electrónicos contra la condensación y las sustancias peligrosas del entorno

Software para PC

- VLT® Motion Control Tool MCT 10: Perfecto para la puesta en marcha y el mantenimiento del convertidor de frecuencia.
- VLT® Motion Control Tool MCT 31: Herramienta de cálculo de armónicos.

Filtro RFI

El filtro RFI asegura que el convertidor de frecuencia no interfiera con otros componentes eléctricos conectados a la red y que podrían hacer que funcionase incorrectamente.

Si se instala un módulo de filtro RFI 1B entre la alimentación de red y el VLT® 2800, el convertidor de frecuencia cumplirá la norma EN 55011-1B en cuanto a EMC.

		Poten- cia	Intensid de entra	
Red	Tipo	P _{N,M} [kW]	I _{INV} [A]	I _{L,N} [A]
	2803	0,37	2,2	5,9
>	2805	0,55	3,2	8,3
240	2807	0,75	4,2	10,6
I × 220–240 V	2811	1,1	6,0	14,5
(22	2815	1,5	6,8	15,2
-	2822*	2,2	9,6	22,0
	2840*	3,7	16,0	31,0
	2803	0,37	2,2	2,9
>	2805	0,55	3,2	4,0
240	2807	0,75	4,2	5,1
0	2811	1,1	6,0	7,0
3 x 200-240 V	2815	1,5	6,8	7,6
ŝ	2822	2,2	9,6	8,8
	2840	3,7	16,0	14,7
	2805	0,55	1,7	1,6
	2807	0,75	2,1	1,9
	2811	1,1	3,0	2,6
	2815	1,5	3,7	3,2
30 /	2822	2,2	5,2	4,7
4	2830	3,0	7,0	6,1
3 x 380-480 V	2840	4,0	9,1	8,1
×	2855	5,5	12	10,6
m	2875	7,5	16	14,9
	2880	11,0	24	24,0
	2881	15,0	32	32,0
	2882	18,5	37,5	37,5

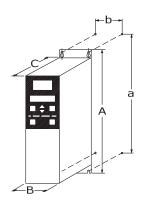
^{*} No disponible con filtro RFI

Especificaciones

Alimentación de red (L1, L2, L3)	
Tensión de alimentación	200-240 V ±10 %, 380-480 V ±10 %
Frecuencia de alimentación	50/60 Hz
Factor de potencia de desplazamiento ($\cos \phi$) cercano a la unidad	(> 0,98)
Conmutación en la alimentación de la entrada L1, L2, L3	1–2 veces/minuto

Frecuencia de alimentación	50/60 Hz
Factor de potencia de desplazamiento (cos ϕ) cercano a la unidad	(> 0,98)
Conmutación en la alimentación de la entrada L1, L2, L3	1–2 veces/minuto
Datos de salida (U, V, W)	
Tensión de salida	0-100 % de la tensión de alimentación
Conmutación en la salida	Ilimitada
Tiempos de rampa	0,02–3600 s
Frecuencia de salida	0–590 Hz
Entradas digitales	
Para arranque/parada, reinicio, termistor, etc.	5
Lógica	PNP o NPN
Nivel de tensión	0–24 V CC
Entradas analógicas	
N.º de entradas analógicas	2
Nivel de tensión	de –10 a +10 V (escalable)
Nivel de intensidad	De 0/4 a 20 mA (escalable)
Entradas de pulsos	
N.º de entradas de pulsos	2
Nivel de tensión	De 0 a 24 V CC (lógica positiva PNP)
Precisión de la entrada de pulsos	(0,1–110 kHz)
Salidas digitales	
N.º de salidas digitales	1
Salidas analógicas	
Salidas analógicas programables	1
Rango de intensidad	De 0/4 a 20 mA
Salidas de relé	
N.º de salidas de relé	1
Comunicación de bus de campo	
Protocolos integrados de serie	RS485 Modbus RTU Protocolos Metasys N2

PROFIBUS DP V1 12 Mbit/s


Temperatura ambiente

Bus de campo integrado

50 °C

Tamaños de aloiamiento [mm]

Iuiii	ramanos ac alojannento [mm]			
Alto				
	Α	В	C	Prof.
Α	200	267,5	267,5	505
a	191	257	257	490
Ancho				
В	75	90	140	200
b	60	70	120	120
Profundidad				
C	168	168	168	244

VLT® Micro Drive

El VLT® Micro Drive es un convertidor de frecuencia de aplicación general que permite controlar motores de CA de hasta 22 kW.

De tamaño compacto, este convertidor ofrece la máxima resistencia y fiabilidad.

El VLT® Micro Drive es un miembro más de la gama VLT®, compartiendo todos los estándares de calidad, fiabilidad y fácil manejo.

Componentes de alta calidad y soluciones VLT® genuinas hacen del VLT® Micro Drive un equipo extremadamente fiable.

Conforme a la norma RoHS

El VLT[®] Micro Drive ha sido fabricado respetando el medio ambiente y cumple con la directiva RoHS.

Gama de potencias

Monofásica 200–240 V CA0,18–2,2 kW Trifásica 200–240 V CA......0,25–3,7 kW Trifásica 380–480 V CA......0,37–22 kW

Características	Ventajas
Fácil de usar	
Mínima puesta en marcha	Ahorra tiempo
Montar, conectar y listo	Mínimo esfuerzo, mínimo tiempo
Copia de ajustes mediante panel de control local	Fácil programación de varios convertidores
Estructura intuitiva de parámetros	Lectura mínima del manual
Compatible con el software VLT®	Ahorra tiempo de puesta en marcha
Funciones de autoprotección	Funcionamiento sin incidentes
Controlador PI de proceso	No requiere el uso de controladores externos
Ajuste automático del motor	Correspondencia óptima entre el convertidor de frecuencia y el motor
150 % de par motor hasta 1 minuto	Gran par de arranque y aceleración
Función de Motor en giro (capturar a un motor girando).	No se desconecta cuando arranca con un motor que está girando (libremente).
ETR (relé termoelectrónico).	Sustituye la protección externa del motor
Controlador Smart Logic	No suele ser necesario el PLC
Filtro RFI integrado	Ahorra costes y espacio
Ahorro de energía	Menor coste de funcionamiento
Rendimiento energético del 98 %	Minimiza la pérdida de calor
Optimización automática de la energía (AEO)	Ahorro de entre un 5 % y un 15 % de energía en aplicaciones HVAC
Fiable	Máximo tiempo de actividad
Protección contra fallos de conexión a tierra	Protege el convertidor de frecuencia
Protección contra sobrecalentamiento	Protege el motor y el convertidor
Protección frente a cortocircuitos	Protege el convertidor de frecuencia
Disipación de calor óptima	Aumento de la vida útil
Concepto único de refrigeración, sin circulación de aire sobre los componentes electrónicos	Funcionamiento sin problemas en entornos severos
Sistema electrónico de alta calidad	Bajo coste de mantenimiento
Condensadores de alta calidad	Admite una alimentación de red irregular
Todos los convertidores son probados a plena carga en la fábrica	Alta fiabilidad
Resistencia al polvo	Aumento de la vida útil
Conforme a la norma RoHS	Protege el medio ambiente
Diseñado conforme directiva WEEE	Protege el medio ambiente

PCB barnizada de serie

Para entornos agresivos.

Opciones de alimentación

Danfoss VLT Drives ofrece una gama de opciones de alimentación externa para utilizar con nuestros convertidores en aplicaciones o redes críticas:

■ Filtro de armónicos avanzado VLT®: para aplicaciones en las que es fundamental reducir la distorsión armónica.

Software para PC

- VLT® Motion Control Tool MCT 10: Ideal para la puesta en marcha y el mantenimiento del convertidor; incluye la programación guiada del controlador en cascada, el reloj en tiempo real, el controlador Smart Logic y el mantenimiento preventivo.
- VLT® Energy Box: herramienta de análisis exhaustivo de la energía, muestra el tiempo de amortización del convertidor.
- VLT[®] Motion Control Tool MCT 31: Herramienta de cálculo de armónicos.

Especificaciones

-specimeaciónes	
Alimentación de red (L1, L2, L3)	
Tensión de alimentación	1 x 200–240 V ±10 %, 3 x 200–240 V ±10 % 3 x 380–480 V ±10 %
Frecuencia de alimentación	50/60 Hz
Factor de potencia de desplazamiento (cos φ) cercano a la unidad	(> 0,98)
Conmutación en la alimentación de la entrada L1, L2, L3	1–2 veces/minuto
Datos de salida (U, V, W)	
Tensión de salida	0–100 % de la tensión de alimentación
Frecuencia de salida	0-200 Hz (modo VVC+), 0-400 Hz (modo U/f)
Conmutación en la salida	Ilimitada
Tiempos de rampa	0,05-3600 s
Entradas digitales	
Entradas digitales programables	5
Lógica	PNP o NPN
Nivel de tensión	0-24 V CC
Entradas de pulsos	
Entradas de pulsos programables	1*
Nivel de tensión	0–24 V CC (lógica positiva PNP)
Frecuencia de entrada de pulsos	20-5000 Hz
* Una de las entradas digitales puede utilizarse para	las entradas de pulsos.

* Una de las entradas digitales puede utilizarse para	las entradas de pulsos.
Entradas analógicas	
Entradas analógicas	2
Modos	1 de intensidad / 1 de tensión o de intensidad
Nivel de tensión	0–10 V (escalable)
Nivel de intensidad	De 0/4 a 20 mA (escalable)
Salidas analógicas	
Salidas analógicas programables	1
Rango de intensidad en la salida analógica	De 0/4 a 20 mA
Salidas de relé	
Salidas de relé programables	1 (240 V CA, 2 A)
Homologaciones	
CE, C-tick, UL	
Comunicación de bus de campo	

Códigos de pedido

Protocolo FC, Modbus RTU

	200 V		400	0 V	
Potencia [kW]	Intensidad [I-nom.]	Monofásico	Trifásico	Intensidad [I-nom.]	Trifásico
0,18	1,2	132F 0001			
0,25	1,5		132F 0008		
0,37	2,2	132F 0002	132F 0009	1,2	132F 0017
0,75	4,2	132F 0003	132F 0010	2,2	132F 0018
1,5	6,8	132F 0005	132F 0012	3,7	132F 0020
2,2	9,6	132F 0007	132F 0014	5,3	132F 0022
3,0				7,2	132F 0024
3,7	15,2		132F 0016		
4,0				9,0	132F 0026
5,5					132F 0028
7,5	Los converti	1,5 kW o más tienen chopper de freno integrado 31,0 132		15,5	132F 0030
11,0	1,5 kW o más			132F 0058	
15,0				31,0	132F 0059
18,5				37,0	132F 0060
22,0				43,0	132F 0061

Panel de control VLT® LCP	11	Sin	potenciómetro:	132B0100
Panel de control VLT® LCP	12	Con	potenciómetro:	132B0101

Dimensiones

(brida de montaje incluida)

[mm]	M1	M2	M3	M4	M5
Alto	150	176	239	292	335
Ancho	70	75	90	125	165
Profun- didad	148	168	194	241	248

^{+ 6} mm con potenciómetro

VLT® Decentral Drive FCD 302

IP 66

Protección para aplicaciones de transporte, instalaciones en áreas que requieran una limpieza exhaustiva y aplicaciones con muchos equipos instalados de forma distribuida.

El convertidor descentralizado VLT® FCD 302 es la nueva generación de convertidores VLT® Decentral Drive FCD 300, basados en la plataforma VLT® AutomationDrive FC 302. Combina las principales características de ambos productos en una envolvente completamente rediseñada, concebida para encajar lo mejor posible en un montaje directo en máquina.

El nuevo VLT® Decentral Drive FCD 302, diseñado para ser simple y robusto, es un producto fácil de usar con un gran rendimiento y un elevado grado de protección.

Los convertidores de frecuencia descentralizados han sido concebidos para el montaje deslocalizado, de forma que se elimina la necesidad de voluminosos armarios de control. Con los convertidores de frecuencia ubicados cerca del motor, no se necesitan largos cables de motor apantallados.

Concepto de caja única

Todas las opciones están integradas dentro de la unidad, lo que reduce el número de cajas a montar, conexiones y terminaciones en la instalación. Consecuentemente, se reducen de forma drástica los costes de mano de obra en horas de montaje así como riesgo de fallos.

Gama de potencias

0,37-3 kW, 3 x 380-480 V

Características	Ventajas
Fiable	Máximo tiempo de actividad
Diseño de partes gemelas conectables (caja de instalación y parte electrónica)	Mantenimiento fácil y rápido.
Interruptor de mantenimiento con bloqueo integrado disponible	Es posible la desconexión local.
Fácil de usar	Ahorro en costes de puesta en marcha y funcionamiento
Superficie lisa	Limpieza sencilla: sin suciedad atrapada
Se adapta a cualquier marca de motor y motor de engranaje, motores de imanes permanentes o de inducción.	Instalación fácil y flexible
Terminales de lazos de bus de campo y de potencia integrados	Ahorro en cableado
LED visibles	Verificación rápida del estado
Configuración y control mediante un panel de control conectable, comunicación por bus de campo y la herramienta de control de movimiento VLT® MCT 10 como software de configuración	Puesta en marcha sencilla
Panel de control galardonado con manual integrado (accesorio).	Fácil manejo
Terminales accionados por muelle sin tornillos	Conexión fácil y rápida
Puerto USB integrado	Conexión directa a PC
Inteligente	Prestación integrada
Controlador Smart Logic	Reduce la capacidad de PLC necesaria
Safe Torque Off (parada de seguridad) de serie	Reduce la necesidad de componentes adicionales.
Sistemas de advertencia inteligentes	Advertencia antes de parada controlada

Protección

- IP 66 negro estándar
- IP 66 blanco estándar
- IP 66 blanco higiénico (todas las protecciones están clasificadas como NEMA 4X)

Fuente de alimentación de 24 V CC integrada

Fuente de alimentación de 24 V CC suministrada en el convertidor de frecuencia. Los terminales de alimentación independientes han sido concebidos para la distribución remota de E/S.

Cableado de alimentación

El nuevo FCD 302 facilita el cableado de alimentación interno. Los terminales para cables de alimentación de 6 mm² (caja grande) o 4 mm² (caja pequeña) situados dentro del alojamiento permiten conectar varias unidades en la misma derivación.

Ethernet switch

Integra Ethernet switch/hub en los dos puertos RJ-45 disponibles en el convertidor de frecuencia para una fácil comunicación en cadena a través de Ethernet. La puesta en marcha de los buses de campo se realiza fácilmente, reduciendo la programación de los equipos mediante la conexión de la red Ethernet o Profibus y empleando un interfaz de conexión directa M12.

Seguridad

El VLT® Decentral Drive FCD 302 viene de serie con la función Safe Torque Off o parada de seguridad, que cumple la norma EN ISO 13849-1 Categoría 3 PL d y SIL 2, de acuerdo con IEC 61508 en modo de baja y alta demanda.

Opciones de bus de campo

(integrado en la tarjeta de control)

- PROFIBUS DP
- PROFINET
- EtherNet/IP
- EtherCAT
- POWERLINK

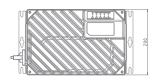
Opciones

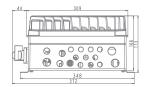
- Tarjeta de encoder VLT® MCB 102
- Tarjeta de resolver VLT® MCB 103
- PLC de seguridad E/S VLT® MCB 108

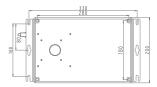
Opciones de hardware

- Soportes de montaje
- Interruptor de mantenimiento
- Disyuntor interno
- Conectores de sensor M12
- Entrada de 24 V CC para fuente de alimentación de control
- Chopper de freno
- Control y suministro de freno electromecánico
- Conectores de bus de campo

Especificaciones


•	
Alimentación de red (L1, L2, L3)	
Tensión de alimentación	380-480 V ±10 %
Frecuencia de alimentación	50/60 Hz
Factor de potencia real (λ)	0,92 a la carga nominal
Factor de potencia de desplazamiento (cos φ)	(>0,98)
Conmutación en la entrada de alimentación	2 veces/minuto
Datos de salida (U, V, W)	
Tensión de salida	0-100 % de la tensión de red
Frecuencia de salida	0–590 Hz 0–300 Hz (modo de flujo)
Conmutación en la salida	Ilimitada
Tiempos de rampa	0,01-3600 s
Entradas digitales	
Entradas digitales programables	4 (6)
Lógica	PNP o NPN
Nivel de tensión	0–24 V CC

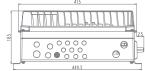

Nota: Es posible programar una o dos entradas digitales como salidas digitales.		
Entradas analógicas		
Número de entradas analógicas	2	
Modos	Tensión o intensidad	
Nivel de tensión	de −10 a +10 V (escalable)	
Nivel de intensidad	0/4–20 mA (escalable)	
Entradas de pulsos/encoder		
Entradas de pulsos/encoder programables	2	
Nivel de tensión	De 0 a 24 V CC (lógica positiva PNP)	
Salidas digitales		
Salidas digitales / de pulsos programables	2	
Nivel de tensión en la salida digital / de frecuencia	0-24 V	
Salidas analógicas		
Salidas analógicas programables	1	
Rango de intensidad	0/4–20 mA	
Salidas de relé		
Salidas de relé programables	2	
Fuente de alimentación de 24 V CC integ	rada	
Carga máx.	600 mA	

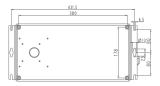

Dimensiones

Bastidor pequeño

(0,37-2,2 kW / 0,5-3,0 CV)







Bastidor grande

(0,37-3 kW / 0,5-4,0 CV)

Todas las medidas se expresan en mm

VLT® Decentral Drive FCD 300

El VLT® Decentral Drive FCD 300 es un completo convertidor de frecuencia diseñado para el montaje descentralizado. Puede montarse en la máquina o en la pared cerca del motor, o bien directamente en el motor.

El VLT® Decentral Drive FCD 300 se presenta en una envolvente sumamente robusta, con un tratamiento de pintura especial para resistir entornos de condiciones severas y los productos de limpieza que se suelen utilizar en las áreas de limpieza. Su diseño ofrece una superficie lisa y fácil de limpiar.

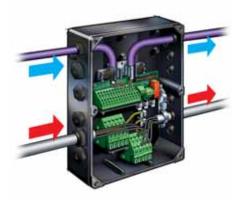
El diseño descentralizado reduce la necesidad de paneles de control centrales y elimina la necesidad de utilizar voluminosos armarios de control del motor.

Disminuye considerablemente el uso de largos cables de motor apantallados.

Gama de potencias

0,37–3,3 kW, 3 x 380–480 V

Protección


IP 66 / tipo 4X (interiores)

Características	Ventajas
Fiable	Máximo tiempo de actividad
Tratamiento de superficie especial como protección frente a entornos agresivos	Limpieza sencilla: sin suciedad atrapada
Diseño de partes gemelas (caja de instalación y parte electrónica)	Mantenimiento fácil y rápido.
Interruptor de mantenimiento con bloqueo integrado disponible	Es posible la desconexión local.
Protección total	Protege el motor y el convertidor
Fácil de usar	Ahorro en tiempo de puesta en marcha y coste de funcionamiento
Se adapta a cualquier marca de motor y motorreductor	Instalación fácil y flexible
Diseñado para circuito combinado de potencia y de bus de campo	Ahorro en cableado
LED visibles	Verificación rápida del estado
Configuración y control mediante un panel de control remoto o a través de la comunicación por bus de campo y el software de configuración específico MCT 10.	Puesta en marcha sencilla

Enchufar y usar

La sección inferior contiene conectores por resorte Cage Clamp sin mantenimiento y dispositivos de conexión para los cables de alimentación y bus de campo. Una vez instalado, la puesta en marcha y la actualización pueden realizarse instantáneamente con solo conectar otra unidad de control.

Instalación flexible

La serie FCD 300 facilita el cableado de alimentación interno y la conexión del bus de campo. Los terminales para cables de alimentación de 4 mm² situados dentro del alojamiento permiten conectar hasta 10 unidades.

Opciones disponibles

- Interruptor de mantenimiento
- Conector para panel de control
- Conectores M12 para sensores externos
- Conector de motor Han 10E
- Chopper de freno y resistencia
- Respaldo externo de 24 V para control y comunicación
- Control y suministro de freno electromecánico externo

Especificaciones

Especificaciones	
Alimentación de red (L1, L2, L3)	
Tensión de alimentación	3 x 380/400/415/440/480 V ±10 %
Frecuencia de alimentación	50/60 Hz
Desequilibrio máx. en la tensión de alimentación	±2,0 % de la tensión nominal de alimentación
Conmutación en la entrada de alimentación	2 veces/minuto
Factor de potencia (cos φ)	0,9/1,0 a la carga nominal
Datos de salida (U, V, W)	
Tensión de salida	0-100 % de la tensión de red
Par de sobrecarga	160 % durante 60 s
Conmutación en la salida	Ilimitada
Tiempos de rampa	0,02–3600 s
Frecuencia de salida	0,2–132 Hz, 1–1000 Hz
Entradas digitales	
Entradas digitales programables	5
Nivel de tensión	0–24 V CC (lógica positiva PNP)
Entradas analógicas	
Entradas analógicas	2 (1 tensión, 1 intensidad)
Nivel de tensión / nivel de intensidad	0- ±10 V CC / 0/4-20 mA (escalables)
Entradas de pulsos	
Entradas de pulsos programables	2 (24 V CC)
Frecuencia máxima	110 kHz (simétrico) / 5 kHz (colector abierto)
Salidas analógicas	
Salida analógica programable	1
Rango de intensidad	De 0/4 a 20 mA
Salidas digitales	
Salida digital / de frecuencia programable	1
Nivel de tensión/frecuencia	24 V CC / 10 kHz (máx.)
Salidas de relé	
Salida de relé programable	1
Carga del terminal máx.	250 V CA, 2 A, 500 VA
Comunicación de bus de campo	
Protocolo FC, Modbus RTU, Metasys N2	Integrado
Profibus DP, DeviceNet, AS-interface	Opcional (integrado)
Elementos externos	
Prueba de vibración	1,0 q (IEC 60068)
Humedad relativa máx.	95 % (IEC 60068-2-3)
Temperatura ambiente	Máx. 40 °C (promedio de 24 horas máx. 35 °C)
Temperatura ambiente mín. en	0°°C
funcionamiento completo	
Temperatura ambiente mín. con rendimiento reducido	-10°C
Homologaciones	CE, UL, C-tick, ATEX*
Homologaciones	CL, OL, C CICK, MILA

^{*} Contacte con Danfoss para obtener más información.

Datos técnicos

VLT® Descentralizado F	CD	303	305	307	311	315	322	330	335*
Intensidad de salida	I _{INV (60s)} [A]	1,4	1,8	2,2	3,0	3,7	5,2	7,0	7,6
(3 x 380–480 V)	I _{MAX (60s)} [A]	2,2	2,9	3,5	4,8	5,9	8,3	11,2	11,4
Potencia de salida (400 V)	S _{INV} [KVA]	1,0	1,2	1,5	2,0	2,6	3,6	4,8	5,3
Eje de salida típico	$P_{M,N}[kW]$	0,37	0,55	0,75	1,1	1,5	2,2	3,0	3,3
	P _{M,N} [CV]	0,5	0,75	1,0	1,5	2,0	3,0	4,0	5,0
Dimensiones mecánicas	Montaje del motor	244 x 192 x 142			300 x 258 x 151				
alto x ancho x profundidad (mm)	Equipo independiente	300 x 192 x 145 367 x 258		x 258 x	154				

^{*} t_{amb} máx. 35 °C

VLT® DriveMotor FCP 106

Eficiencia

El VLT® DriveMotor
FCP 106 cumple los
requisitos de eficiencia
de IE3 e IE4
(fprEN 60034-30-1).

Se trata de un convertidor de frecuencia independiente para ser montado en cualquier motor de inducción o de imanes permanentes de 0,55 a 7,5 kW.

El VLT® DriveMotor FCP 106, con una amplia gama de características de bomba y ventilador integradas de serie, proporciona un control eficiente de los motores de 0,55 a 7,5 kW.

Al montar el convertidor de frecuencia directamente en el motor, los propietarios tienen libertad para elegir el fabricante y diseñar el sistema óptimo para su aplicación. Una vez conectado al motor, el convertidor de frecuencia establece automáticamente los parámetros óptimos para proporcionar un funcionamiento estable y con eficiencia energética.

El FCP 106 es la solución perfecta tanto para los fabricantes de equipos originales como para los usuarios finales. Empleando una placa de adaptación, se puede montar el convertidor de frecuencia directamente sobre el motor, ahorrando la utilización de envolventes y cableado adicional.

La configuración resulta sencilla con la herramienta de control de movimiento VLT® MCT 10 de Danfoss.

Características	Ventajas
Pantalla alfanumérica, 7 idiomas	Puesta en marcha efectiva
Conexión externa para la pantalla de serie	Conectividad rápida
Datos del motor preprogramados	Sin necesidad de programación
Protección IP 55/66	Fiabilidad en entornos húmedos y sucios
Clase de protección PCB 3C3	Fiabilidad en entornos corrosivos
Vibración de hasta 2 g / golpe de hasta 25 g (3M6: IEC 721-3-3)	Adecuado para todas las situaciones de montajes del motor
Sobrecarga del 110 % (0,55–7,5 kW)	Optimizado para ventiladores y bombas
Sobrecarga del 160 % (0,55–5,5 kW)	Par de arranque alto
Motor de imanes permanentes o asíncrono	Libre elección de la tecnología del motor
Modo de reposo	Ahorra energía y prolonga la vida útil
Función de optimización automática de energía	Ahorra entre un 5 % y un 15 % de energía adicional
Funciones de AHU específicas	Reduce costes y ahorra energía
Funciones de bomba específicas	Protege la bomba y prolonga su vida útil
Controlador PI integrado	Sin necesidad de controlador PI externo
Controlador Smart Logic	Suele hacer innecesario el uso de PLC/DDC
Señal de control para freno mecánico	Reduce el esfuerzo del PLC
Protocolos FC, Modbus, Metasys y BACnet integrados	Conectividad flexible
Enlace de CC integrado	Cumple la norma EN 61000-6-12, cable de alimentación reducido
Filtros EMC integrados	Cumple las normas EN 61800-3 (C1 y C2) y EN 55011 Clase (B y A1)

Compatible con el convertidor de frecuencia VLT® DriveMotor FCM 300

El FCP 106 puede instalarse en un motor FCM 300 con una placa adaptadora.

Gama de potencias

Clasificaciones de protección

IP 66 (NEMA 4X)......0,55-7,5 kW

Panel de control VLT® LCP 31

(solo LCP)
Pantalla alfanumérica para la puesta en marcha e indicación del estado durante el funcionamiento. Conexión de fácil acceso a través del prensacables.

Código de pedido: 132B0200

Panel de control VLT® LCP 31 Kit de montaie

Incluye cable de 3 m, soporte de montaje en panel, junta y cierres. Código de pedido: 134B0557

Panel de funcionamiento local (LOP)

Panel de detención / puesta en marcha y configuración de la referencia.

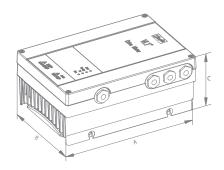
Código de pedido: 175N0128

Potenciómetro para prensacables

Para configurar la referencia directamente en el convertidor de frecuencia. Código de pedido: 177N0011

Herramienta de software para PC:

Herramienta de control de movimiento VLT° MCT 10 Ideal para la puesta en marcha y el mantenimiento del convertidor de frecuencia y el motor de inducción conectado.


Monte el FCP 106 en el motor que prefiera.

Especificaciones

Alimentación de red (L1, L2, L3)	
Tensión de alimentación	$380-480 \text{ V} \pm 10 \%$
Frecuencia de alimentación	50/60 Hz
Factor de potencia de desplazamiento ($\cos \phi$)	cercano a la unidad (>0,98)
Conmutación en la alimentación de la entrada L1, L2, L3	1–2 veces/minuto
Datos de salida (U, V, W)	
Tensión de salida	0–100 % de la tensión de alimentación
Conmutación en la salida	Ilimitada
Tiempos de rampa	1–3600 segundos
Frecuencia de salida	0-200 Hz
Entradas digitales	
Entradas digitales programables	4
Lógica	PNP o NPN
Nivel de tensión	24 V
Entradas analógicas	
Entradas analógicas	2
Modos	Tensión e intensidad
Nivel de tensión	0–10 V (escalable)
Nivel de intensidad	De 0/4 a 20 mA (escalable)
Salidas digitales/analógicas	
Salidas programables	2
Nivel de intensidad de salida analógica	De 0/4 a 20 mA (escalable)
Salidas de relé	
Salidas de relé programables	2 (carga resistiva 250 V CA, 3 A; 30 V CC, 2 A)

Funciones adicionales al montar el componente electrónico (FCP 106) en el motor			
Anote la información de producción en el convertidor de frecuencia	Identificación de la programación		
Cambie los datos del motor para que se adapten a su motor	Optimice la configuración de los ajustes de su motor		
Cree nuevos ajustes de fábrica (tecnología CSIV)	Compruebe que los ajustes de los datos del motor son correctos		
Longitud del cable del motor de hasta 0,5 m	Monte FCP a cada lado del motor		
Placa adaptadora personalizada	Monte FCP en cualquier marca de motor		
Puede montarse en el motor un FCP de grandes dimensiones	Mayor sobrecarga para aplicaciones importantes		
Refrigeración independiente del motor	FCP se adapta a cualquier motor		

Dimensiones

Dimensiones	Longitud	Ancho	Alto
(mm)	Α	В	С
MH1	231	162	107
MH2	277	187	113
MH3	322	220	124

VLT® DriveMotor FCM 106

Eficiencia

El VLT® DriveMotor
FCP 106 cumple los
requisitos de eficiencia de
IE3 e IE4
(fprEN 60034-30-1).

Fácil de instalar, se entrega con un motor de inducción estándar o de imanes permanentes ya montado.

Con una gran variedad de prestaciones de ventilador y bomba incluidas de serie, el convertidor VLT® Drive-Motor FCM 106 es un motor muy especializado y una solución de control del rango 0,55–7,5 kW que permite ahorrar espacio.

El convertidor de frecuencia se entrega de fábrica montado con un motor de inducción estándar o de imanes permanentes de tamaño optimizado.

De este modo, el FCM 106 permite reducir significativamente los costes de instalación y complejidad. El diseño compacto de la solución de convertidor con motor también hace innecesario el uso de armarios.

Dado que el convertidor de frecuencia se monta directamente en el motor, se eliminan los largos cables de motor, lo que reduce aún más los costes tanto para los fabricantes de equipos originales como para los usuarios finales. El convertidor de frecuencia se conecta al motor mediante un conector, por lo que el montaje y el desmontaje son rápidos y el mantenimiento es sencillo.

Características	Ventajas
Pantalla alfanumérica, 7 idiomas	Puesta en marcha efectiva
Conexión externa para la pantalla de serie	Conectividad rápida
Datos del motor preprogramados	Sin necesidad de programación
IP 66 (convertidor) / IP 55 (motor)	Fiabilidad en entornos húmedos y sucios
Clase de protección PCB 3C3	Fiabilidad en entornos corrosivos
Vibración de hasta 2 g / golpe de hasta 25 g (3M6: IEC 721-3-3)	Adecuado para todas las situaciones de montajes del motor
Sobrecarga del 110 % (0,55–7,5 kW)	Optimizado para ventiladores y bombas
Sobrecarga del 160 % (0,55–5,5 kW)	Par de arranque alto
Motor de imanes permanentes o asíncrono	Libre elección de la tecnología del motor
Modo de reposo	Ahorra energía y prolonga la vida útil
Función de optimización automática de energía	Ahorra entre un 5 % y un 15 % de energía adicional
Funciones de AHU específicas	Reduce costes y ahorra energía
Funciones de bomba específicas	Protege la bomba y prolonga su vida útil
Controlador PI integrado	Sin necesidad de controlador PI externo
Controlador Smart Logic	Suele hacer innecesario el uso de PLC/DDC
Señal de control para freno mecánico	Reduce el esfuerzo del PLC
Protocolos FC, Modbus, Metasys y BACnet integrados	Conectividad flexible
Enlace de CC integrado	Cumple la norma EN 61000-6-12, cable de alimentación reducido
Filtros EMC integrados	Cumple las normas EN 61800-3 (C1 y C2) y EN 55011 Clase (B y A1)

El DriveMotor forma parte del concepto EC+ de Danfoss, que maximiza las ventajas y la eficiencia de los motores de imanes permanentes, los convertidores de velocidad variable y las tecnologías de ventilador por conexión.

Gama de potencias

Clasificaciones de protección

IP 66 (tipo UL 4X de exteriores)...... 0,55–7,5 kW

Panel de control VLT® LCP 31 (solo LCP)

Pantalla alfanumérica para la puesta en marcha e indicación del estado durante el funcionamiento. Conexión de fácil acceso a través del prensacables. Código de pedido: 132B0200

Panel de control VLT® LCP 31 Kit de montaje

Incluye cable de 3 m, soporte de montaje en panel, junta y cierres. *Código de pedido: 134B0557*

Panel de funcionamiento local (LOP)

Panel de detención / puesta en marcha y configuración de la referencia. *Código de pedido: 175N0128*

Potenciómetro para prensacables

Para configurar la referencia directamente en el convertidor de frecuencia. *Código de pedido: 177N0011*

Herramienta de software para PC:

Herramienta de control de movimiento VLT° MCT 10 Ideal para la puesta en marcha y el mantenimiento del convertidor de frecuencia y el motor de inducción conectado.

Especificaciones

•	
Alimentación de red (L1, L2, L3)	
Tensión de alimentación	380-480 V ±10 %
Frecuencia de alimentación	50/60 Hz
Factor de potencia de desplazamiento (cos ϕ)	cercano a la unidad (>0,98)
Conmutación en la alimentación de la entrada L1, L2, L3	1–2 veces/minuto
Datos de salida (U, V, W)	
Tensión de salida	0–100 % de la tensión de alimentación
Conmutación en la salida	Ilimitada
Tiempos de rampa	1–3600 segundos
Frecuencia de salida	IM: 0-200 Hz / PM: 0-390 Hz
Entradas digitales	
Entradas digitales programables	4
Lógica	PNP o NPN
Nivel de tensión	24 V
Entradas analógicas	
Entradas analógicas	2
Modos	Tensión e intensidad
Nivel de tensión	0–10 V (escalable)
Nivel de intensidad	De 0/4 a 20 mA (escalable)
Salidas digitales/analógicas	
Salidas programables	2
Nivel de intensidad de salida analógica	De 0/4 a 20 mA (escalable)
Salidas de relé	
Salidas de relé programables	2 (carga resistiva 250 V CA, 3 A; 30 V CC, 2 A)

Elija el FCM 106 con un motor de inducción de serie o un motor de imanes permanentes.

Tamaños del bastidor del motor estándar IEC

PM 1500 r.p.m.	PM 3000 r.p.m.	IM 3000 r.p.m.	IM 1500 r.p.m.	Tamaño del bastidor MH	kW
71	No disponible	No disponible	No disponible		0,55
71	71	71	80	MH1	0,75
71	71	80	90	MILLI	1,1
71	71	80	90		1,5
90	71	90	100		2,2
90	90	90	100	MH2	3
90	90	100	112		4
112	90	112	112	MH3	5,5
112	112	112	132	IVITI3	7,5

VLT® DriveMotor FCM 300

Motores

LE2

de gran eficiencia
combinados con un
VLT® de gran rendimiento
y ahorro energético.

El VLT[®] DriveMotor serie FCM 300 es una solución integrada de convertidor-motor que combina un convertidor de frecuencia VLT[®] con un motor de alta calidad en un solo producto.

En lugar de la caja de terminales del motor, se coloca el convertidor de frecuencia, que no es más alto que la caja de terminales estándar ni más ancho ni largo que el motor.

Incorporado en un motor de alta calidad, el VLT[®] DriveMotor FCM 300 también está disponible en numerosas variantes, personalizadas conforme a las necesidades del cliente.

En el motor

El control de motor electrónico VLT®, en combinación con el motor, permite prescindir completamente del cable de motor, con lo que se reduce al máximo cualquier posible problema de interferencias electromagnéticas (EMC). El calor del convertidor de frecuencia se disipa al mismo tiempo que el calor del motor.

Gama de potencias

0,55-7,5 kW, 3 x 380-480 V

Características	Ventajas
Fiable	Máximo tiempo de actividad
Protección robusta	Resistente en entornos exigentes
Sin limitación de longitud del cable de alimentación	Mayor flexibilidad
Protección térmica	Protección total del inversor del motor
Pleno cumplimiento de las normas EMC	Sin problemas relacionados con interferencias electromagnéticas
Fácil de usar	Ahorro en tiempo de puesta en marcha y coste de funcionamiento
El motor y el convertidor se adaptan perfecta- mente entre sí	Ahorra tiempo de puesta en marcha
No se necesita espacio para el panel: el DriveMotor se coloca sobre la máquina	Ahorra espacio
Montaje flexible: pie/brida/cara/ pie-brida/pie-cara	Cumple los requisitos del cliente
Actualización sin cambios mecánicos	Mantenimiento sencillo
Configuración y control mediante un panel de control remoto o a través de la comunicación por bus de campo y el software de configuración específico MCT 10.	Puesta en marcha sencilla

Protección

IP 55 (estándar) IP 65 / IP 66 (opcional)

Tipo de motor

2 polos 4 polos

Versiones de montaje

B03 pie B05 brida B35 pie + brida B14 cara B34 pie + cara

Panel de control

Está disponible un panel de control local (LCP) para el funcionamiento, la configuración y el diagnóstico. El LCP puede sostenerse en la mano o montarse en la parte delantera de un panel (IP65).

Modo de reposo

En el modo de reposo, el motor se detendrá cuando esté sin carga. Cuando vuelva la carga, el convertidor de frecuencia reiniciará el motor.

Orificios de purga del motor

Para las aplicaciones en las que puede producirse condensación de agua.

Control de bomba sin sensor: - Versión OEM

Ofrece un control preciso de la presión (piezométrica) sin necesidad de utilizar un transmisor de presión.

Especificaciones

especificaciones	
Alimentación de red (L1, L2, L3)	
Tensión de alimentación	3 x 380/400/415/440/460/480 V ±10 %
Frecuencia de alimentación	50/60 Hz
Factor de potencia (cos φ)	Máx. 0,9 / 1,0 a carga nominal
Máximo desequilibrio en la tensión de alimentación	±2 % de la tensión de alimentación nominal
Conmutación en la entrada de alimentación	Una vez cada 2 minutos
Características de control (convertidor de fre	cuencia)
Rango de frecuencia	0–132 Hz
Par de sobrecarga	160 % durante 60 s
Resolución en la frecuencia de salida	0,1 %
Tiempo de respuesta del sistema	30 ms ±10 ms
Precisión de velocidad	±15 r.p.m. (lazo abierto, modo CT, motor de 4 polos 150–1500 r.p.m.)
Entradas digitales	
Entradas digitales programables	4
Nivel de tensión	De 0 a 24 V CC (lógica positiva PNP)
Entradas analógicas	
Entradas analógicas	2 (1 tensión, 1 intensidad)
Nivel de tensión/intensidad	0-10 V CC / 0/4-20 mA (escalables)
Entradas de pulsos	
Entrada de pulsos programable	1 (24 V CC)
Frecuencia máxima	70 kHz (simétrico) / 8 kHz (colector abierto)
	70 KHZ (SIME CHES), 70 KHZ (COICCEOL USICIEO)
Salidas analógicas/digitales Salida analógica/digital programable	1
3 3 . 3	•
Rango de intensidad/corriente	0/4–20 mA / 24 V CC
Salidas de relé	
Salida de relé programable	1
Carga del terminal máx.	250 V CA, 2 A, 500 VA
Comunicación de bus de campo	
Protocolo FC, Modbus RTU	Integrado
Profibus DP	Opcional (integrado)
Elementos externos	
Prueba de vibración	1,0 g (IEC 60068)
Humedad relativa máx.	95 % (IEC 60068-2-3)
Temperatura ambiente	Máx. 40 °C (promedio de 24 horas máx. 35 °C)
Temperatura ambiente mín. en funcionamiento completo	0°°C
T	

Datos técnicos

rendimiento reducido

Temperatura ambiente mín. con

FCM	305	307	311	315	322	330	340	355	375
Salidas del motor									
[CV]	0,75	1,0	1,5	2,0	3,0	4,0	5,0	7,5	10,0
[kW]	0,55	0,75	1,1	1,5	2,2	3,0	4,0	5,5	7,5
Par motor									
2 polos [Nm] 1)	1,8	2,4	3,5	4,8	7,0	9,5	12,6	17,5	24,0
4 polos [Nm] 2)	3,5	4,8	7,0	9,6	14,0	19,1	25,4	35,0	48,0
Tamaño del bastidor									
[mm]	80	80	90	90	100	100	112	132	132
Intensidad de entrada [A] 380 V									
2 polos	1,5	1,8	2,3	3,4	4,5	5,0	8,0	12,0	15,0
4 polos	1,4	1,7	2,5	3,3	4,7	6,4	8,0	11,0	15,5
Intensidad de entrada [A] 480 V									
2 polos	1,2	1,4	1,8	2,7	3,6	4,0	6,3	9,5	11,9
4 polos	1,1	1,3	2,0	2,6	3,7	5,1	6,3	8,7	12,3

-10° C

1) a 400 V, 3000 r.p.m., 2) a 400 V, 1500 r.p.m.

VLT® OneGearDrive®

VLT® OneGearDrive® Hygienic

VLT® OneGearDrive® Standard con freno

Hasta un 89 %

de eficiencia en el sistema puede lograrse con VLT® OneGearDrive® combinado con VLT® AutomationDrive FC 302 o VLT® Decentral Drive FCD 302. Supere ya la clase de eficiencia superpremium de IE4.

VLT® OneGearDrive® es un motoreductor síncrono trifásico de imanes permanentes de gran eficiencia acoplado a una caja de engranaje cónico. El VLT® OneGearDrive®, como parte de la gama VLT® FlexConcept® de Danfoss, es un sistema de convertidor con eficiencia energética que ayuda a optimizar la productividad de la planta y a reducir los gastos energéticos.

Con solo un tipo de motor y tres relaciones de engranaje disponibles, el concepto de motor cubre las versiones típicas de los convertidores de frecuencia para cintas transportadoras que se utilizan normalmente en la industria alimentaria y de bebidas. Además, la limitada gama de configuraciones físicas del VLT® OneGearDrive® simplifica el almacenamiento de piezas de recambio y lo hace más rentable, al mismo tiempo que facilita su instalación y mantenimiento gracias a unas dimensiones mecánicas uniformes.

Diseño de planta flexible

Junto con el convertidor de frecuencia VLT® AutomationDrive FC 302 o el VLT® Decentral Drive FCD 302, el VLT® OneGearDrive® se adapta igualmente a instalaciones centralizadas o descentralizadas, lo que le proporciona una flexibilidad absoluta al diseñador de la planta desde el comienzo. El conjunto del sistema puede lograr un ahorro energético de hasta el 40 % en comparación con los sistemas convencionales.

Dos versiones

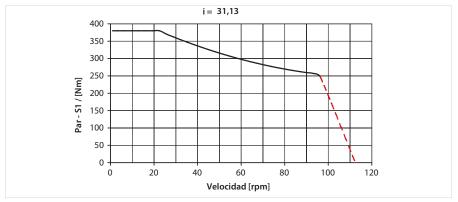
El convertidor VLT® OneGearDrive® se ofrece en dos versiones: el convertidor VLT® OneGearDrive® Standard, para utilizar en áreas de producción secas y húmedas, y el VLT® OneGearDrive® Hygienic, para usar en áreas húmedas, zonas que se limpian muy a menudo y áreas de producción en salas limpias y asépticas.

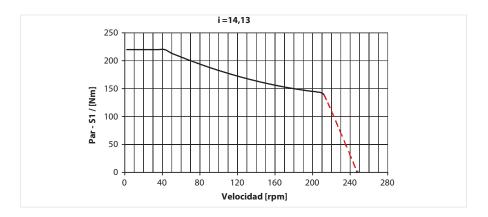
Características	Ventajas
Gran eficiencia del sistema con convertidor de frecuencia	Ahorre dinero y energía: ahorro energético de hasta el 40 % en comparación con los sistemas convencionales.
Motor síncrono trifásico de 10 polos de imanes permanentes de alto rendimiento con converti- dor de frecuencia de engranaje cónico	Mejor que la clase de eficiencia superpremium de IE4
Diámetros de eje disponibles: 30 mm, 35 mm, 40 mm y 3 tamaños de eje en unidades imperiales	Adaptación flexible a los estándares del cliente
Una protección completamente lisa que no deja hendiduras ni lugares de acumulación de suciedad.	– Limpieza sencilla – Producción segura
Conexión de motor con el conector circular de acero inoxidable CleanConnect® de Danfoss	 Conexión segura en zonas húmedas Instalación y sustitución rápida Gran facilidad de limpieza
Conexión de motor y de freno mediante caja de terminales con tecnología CageClamp®	Conexión rápida y fiableMenores costes de instalación
Barnizado aséptico	 Resistente a detergentes y desinfectantes (pH 2.12)
Caja de engranaje sin orificios de ventilación de la válvula de aire y utilización de lubricantes aptos para el uso alimentario conforme a los requisitos de la FDA y la NFS	Hasta 35 000 horas de funcionamiento con carga parcial entre cambio y cambio de aceite
Alto grado de protección: - IP 67 e IP 69K (OGD- H) - IP 65 e IP 67 (OGD- S)	 Uso sin restricciones en áreas de limpieza Gran protección en áreas de limpieza
Funcionamiento sin ventilador	 Menor ruido No penetran ni se expulsan al entorno gérmenes transmitidos por el aire ni partículas de suciedad en el motor
Solo 3 relaciones de engranaje en un mismo diseño	La reducción de variantes, de hasta el 70 %, permite reducir el inventario de piezas de repuesto.
Compatible con todos los convertidores de frecuencia de Danfoss FC/D 302 de 1,5–3 kW	Libre elección de instalaciones centralizadas y descentralizadas

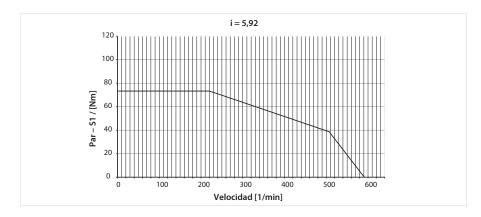
La superficie de ambas versiones, totalmente suave, de fácil limpieza y sin aletas de refrigeración, impide que la suciedad se acumule y permite que se liberen los detergentes libremente. El motor sin ventilador evita el riesgo de que los gérmenes y las partículas de suciedad que se transmiten por el aire se absorban y se vuelvan a expulsar al aire del entorno.

Diseño higiénico

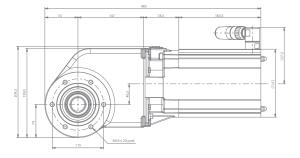
El VLT® OneGearDrive® Hygienic cumple con los requisitos de diseño óptimo, en términos de limpieza e higiene, del certificado EHEDG (European Hygienic Engineering & Design Group). Ha obtenido el certificado IPA (del Instituto Frauenhofer) de utilización en salas limpias y relleno aséptico, de acuerdo con la norma específica «Clasificación de la limpieza del aire» DIN EN ISO 14644-1.

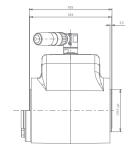





Especificaciones

Potencia de salida .	1,5-3,0 KVV
Velocidad máx	3000 r.p.m.
Frecuencia máx	250 Hz
Corriente máx	7,2 A
Par	1,7 Nm/A
Tensión	120 V / 1000 r.p.m.
Peso	Aprox. 28 ka


Características de par/velocidad para relaciones de engranaje i = 31,13; i = 14,13, e i = 5,92 (máx. 3,0 kW)



Dimensiones

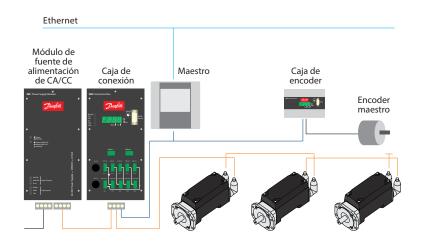
Dimensiones del convertidor Danfoss VLT® OneGearDrive® Hygienic en mm

VLT® Integrated Servo Drive System ISD 410

La integración del convertidor de frecuencia electrónico y el servomotor en el mismo alojamiento hace que este sistema de convertidor sea perfecto para las aplicaciones que requieran una gran flexibilidad y dinámica, como las del sector de la alimentación, bebidas y embalaje. La descentralización del convertidor de frecuencia ofrece ventajas en el montaje, la instalación y el funcionamiento. Se pueden integrar hasta 60 convertidores de frecuencia en el sistema de unidad servo, en función de la aplicación.

Unidad servo

El control de movimiento está integrado en el convertidor de frecuencia, de modo que las secuencias de movimientos pueden tener lugar de manera independiente. Esto libera al controlador de mayor clasificación y ofrece un concepto de convertidor de frecuencia mucho más flexible. El maestro puede programarse mediante IEC 61131-3 y los cables híbridos se utilizan para conectar los convertidores de frecuencia, lo que hace que la instalación resulte rápida y sencilla.


Módulo de fuente de alimentación

El sistema se alimenta con CC de 300 V mediante el módulo de fuente de alimentación. Los LED de la parte delantera de la unidad permiten un control sencillo del estado de funcionamiento. La salida de corriente máxima es de 10 A y la potencia nominal es de 3 kW.

Caja de conexión

La caja de conexión crea el enlace entre los servomotores y la fuente de alimentación. Pueden conectarse dos grupos independientes de hasta 30 motores. El cable híbrido contiene el suministro de CC, CAN y seguridad.

Características	Ventajas
Unidad servo descentralizada y compacta	Reducción de costes y gran flexibilidad
Respuesta de servo dinámica	Rapidez, precisión y eficiencia energética
Rendimiento de la configuración del sistema	Configuración rápida y sencilla de varios convertidores de frecuencia
Suministro de CC a convertidores de frecuencia desde un módulo de fuente de alimentación central	Instalación rápida, reducción del número de cables
Control a través de IEC 61131-3	Sistema abierto
Cable híbrido	Instalación rápida y sencilla, reducción del número de cables
Todos los componentes son compatibles con CAN	Mejora del diagnóstico y reducción del tiempo de inactividad

Caja de encoder

La caja de encoder permite la conexión de un encoder maestro y esto permite una lectura con mayor precisión. Además, la información de tiempos se envía al resto de convertidores de frecuencia vía CAN. Si no se conecta ningún encoder, la caja de encoder funciona como un eje virtual del sistema ISD 410 de unidad servo.

Opciones disponibles

- Safe Torque Off (STO)
- Freno
- Realimentación:
 - Resolver
 - Monovuelta
 - Multivuelta
- Cable de lazo híbrido flexible
- Brida IEC
- Brida personalizada bajo petición

Accesorios disponibles

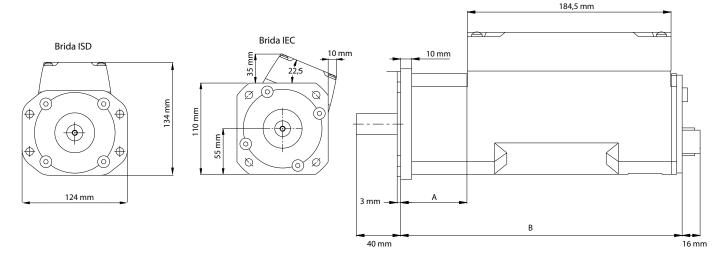
- Junta del eje
- Kits de conexión para:
 - Módulo de fuente de alimentación
 - Caja de conexión
 - Caja de encoder
- Resistencia de terminación

Especificaciones

Caja de encoder Tensión de entrada

Entradas de encoder compatibles

Dimensiones (alto \times ancho \times profundidad)


Lispecificaciones	
Servomotor	
Tensión nominal	300 V CC
Par nominal	1,7–2,1 Nm
Par máximo	8–11 Nm
Intensidad nominal	0,6-1,15 A
Intensidad máx.	3,95–7,05 A
Velocidad nominal	600–1000 r.p.m.
Velocidad máx.	1000–1500 r.p.m.
Potencia nominal	180–345 W
Inercia	De 3,5 10 ⁻⁴ a 6,5 10 ⁻⁴ kgm ²
Diámetro de eje	19 mm
Protección	IP 54/IP 65
Módulo de fuente de alimentación	
Tensión de entrada	380–480 V CA ±10 %, trifásico: L1, L2, L3 y PE
Intensidad de entrada	6 A _{rms} en cada fase
Tensión de salida	300 V CC
Potencia nominal	3000 W
Intensidad nominal	10 A
Dimensiones (alto \times ancho \times profundidad)	268 × 130 × 205 mm
Caja de conexión	
Tensión de entrada	300 V CC
Líneas de tensión de salida 1 y 2	300 V CC
Potencia nominal	3000 W
Intensidad nominal	10 A
Dimensiones (alto \times ancho \times profundidad)	268 × 130 × 205 mm

24 V CC

SSI, SSI-CRC, QEP y BiSS

 $105,2 \times 142,0 \times 70,8 \text{ mm}$

Dimensiones

Motor ISD 410	Dimensiones [mm]	
	Α	В
Brida ISD/IEC con freno	60	255
Brida ISD/IEC sin freno	35	230

VLT® Soft Starter MCD 500

El VLT® Soft Starter MCD 500 es una solución completa para el arranque de motores. Los transformadores de corriente miden la intensidad del motor y proporcionan realimentación para los perfiles controlados de rampa del motor.

El AAC (Control de aceleración adaptativo) emplea automáticamente el perfil de arranque y parada más adecuado para la aplicación en cuestión.

El control de aceleración adaptativo hace que, para cada arranque y cada parada, el arrancador suave compare y adapte el proceso al perfil elegido correspondiente a la aplicación.

El arrancador suave VLT® MCD 500 dispone de una pantalla gráfica de cuatro líneas y un teclado lógico para facilitar la programación. Se puede ajustar la configuración avanzada que muestra el estado de funcionamiento.

Tres sistemas de menús —menú rápido, configuración de la aplicación y menú principal— proporcionan el método de programación óptimo en cada caso.

Gama de potencias

21–1600 A, 7,5–850 kW (Conexión en triángulo interna de 1,2 MW) Versiones para 200–690 V CA

Características

AAC, Control de aceleración adaptativo

Las barras de bus ajustables permiten la entrada por la parte superior y la inferior (360–1600 A, 160–850 kW)

Frenado de inyección CC distribuido uniformemente en tres fases

Triángulo interno (conexión de 6 cables)

Menús de registro: 99 tipos distintos de eventos y registro de alarmas, que proporcionan información sobre los eventos, alarmas y rendimiento.

Reinicio automático.

Velocidad fija (funcionamiento a baja velocidad)

Modelo térmico de segundo orden

Contactores de bypass interno (21–215 A, 7,5–110 kW)

Reloj de arranque/parada automáticos

Tamaño compacto: uno de los más pequeños de su clase

Pantalla gráfica de 4 líneas

Varias configuraciones de programación (menú estándar, menú ampliado y configuración rápida)

Varios idiomas

Ventajas

Se adapta automáticamente al perfil de arranque y parada elegido

Ahorro de espacio, menor coste de cableado y reequipamiento sencillo

Menor coste de instalación y estrés en el motor

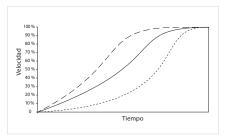
Se puede seleccionar para la aplicación un arrancador suave más pequeño

Facilita el análisis de la aplicación

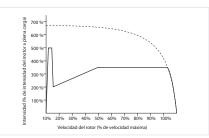
Menos interrupciones Flexibilidad de aplicaciones

Permite usar los motores con todo su potencial, sin daños por sobrecarga.

- Ahorra espacio y cableado en comparación con el bypass externo
- Se disipa muy poco calor durante el funcionamiento. Evita los costosos ventiladores externos, los cables y los contactores de bypass.


Flexibilidad de aplicaciones

Ahorra espacio en los armarios y otras configuraciones de la aplicación


Configuración y método de programación óptimos para visualizar el estado de funcionamiento

Simplifica la programación sin renunciar a la máxima flexibilidad

Para prestar servicio a todo el mundo

Tres perfiles de arranque del Control de aceleración adaptativo (AAC): aceleración temprana, constante y tardía.

Rampa de intensidad / intensidad constante: se muestra aquí con arranque rápido.

Arrancador suave totalmente equipado para motores de hasta 850 kW

- Solución integral para el arranque de motores
- Funciones avanzadas de arranque, parada y protección
- Control de aceleración adaptativo
- Conexión en triángulo interno
- Pantalla gráfica de 4 líneas
- Varios menús de ajuste de programación

Opcional

- Módulos para comunicación en serie:
 - DeviceNet
 - PROFIBUS
 - Modbus RTU
 - PROFINET
 - Modbus TCP
 - EtherNet IP
- Kit de panel remoto
- Software para PC:
 - WinMaster
 - USB
 - Herramienta de control de movimiento VLT® MCT 10

Panel de control VLT® LCP 501

- Interfaz HMI con todas las funciones: en el LCP 501, puede hacer lo mismo que con el arrancador suave VLT® MCD 500.
- Concepto de interfaz de botones y estructura de menús «FC» de Danfoss
- Selección de varios idiomas, incluidos ruso y chino
- Gráficos completos
- Idioma real en 4 líneas
- Lista de parámetros completa, menú rápido y configuración de la aplicación
- Varias vistas de control ajustables
- Función de copiar y pegar que permite al usuario copiar ajustes de parámetros del LCP y cargarlos en otra unidad
- IP 65, NEMA3R
- Cable de 3 m y kit de montaje incluidos

Especificaciones

Tensión de red (L1, L2 y L3)	
MCD5-xxxx-T5	200 V CA-525 V CA (±10 %)
MCD5-xxxx-13 MCD5-xxxx-T7	380 V CA~690 V CA (±10 %)
IVICUS-XXXX-17	380 V CA~690 V CA (±10 %)
MCD5-xxxx-T7	(conexión en triángulo interno)
Tanaián da control (tamainales A.C. A.C.)	(conexion en thangaio interno)
Tensión de control (terminales A4, A5 y A6) CV1 (A5, A6)	24 V CA / V CC (±20 %)
CV2 (A5, A6)	110~120 V CA (+10 % / –15 %)
CV2 (A4, A6)	220~240 V CA (+10 % / -15 %)
Frecuencia de red	50/60 Hz (±10 %)
Tensión de aislamiento a tierra nominal	600 V CA
Tensión de impulso no disruptiva nominal	4 kV
Terision de impuiso no disruptiva nominai	Arrancador de motor de semiconductores
Designación de forma	con bypass o continuo, forma 1
Capacidad de cortocircuito	
Coordinación con fusibles de semiconductor	Tipo 2
Coordinación con fusibles HRC	Tipo 1
De MCD500-0021B a 0215B	Corriente posible de 65 kA
MCD500-0245C	Corriente posible de 85 kA
De MCD500-1200C a 1600C	Corriente posible de 100 kA
Capacidad electromagnética (conforme a la di	rectiva europea 89/336/CEE)
Emisiones EMC (terminales 13 v 14)	Especificaciones IEC 60947-4-2, clase B, y
Emisiones EMC (terminales 13 y 14)	Lloyds Marine n.º 1
Inmunidad EMC	IEC 60947-4-2
Salidas	
Salidas de relé	10 A a 250 V CA resistiva, 5 A a 250 V CA AC15 pf 0,3
Salidas programables	
Relé A (13 y 14)	Normalmente abierto
Relé B (21, 22 y 24)	Conmutación
Relé C (33 y 34)	Normalmente abierto
Salida analógica (07, 08)	0–20 mA o 4–20 mA (seleccionable)
Carga máxima	$600~\Omega$ (12 V CC a 20 mA) (precisión $\pm 5~\%$)
24 V CC de salida (16 y 08) con carga máxima	200 mA (precisión ±10 %)
Entorno	
Protección MCD5-0021B~MCD5-0105B	IP 20 y NEMA, UL tipo interior 1
Protección MCD5-0131B~MCD5-1600C	IP 00, UL tipo abierto interior
Temperatura de funcionamiento	De -10° C a 60° C, por encima de 40° C con reducción de potencia
Temperatura de almacenamiento	De -25 °C a 60 °C
Altitud de funcionamiento	De 0 a 1000 m, por encima de 1000 m con reducción de potencia
Humedad	Del 5 % al 95 % de humedad relativa

Disipación de calor

Grado de contaminación

Durante el arranque	4,5 vatios por amperio
	MCD5-0021B-MCD5-0053B = 39 vatios MCD5-0068B-MCD5-0105B = 51 vatios MCD5-0131B-MCD5-0215B = 120 vatios
Durante el funcionamiento (aprox.)	MCD5-0245C–MCD5-0927C 4,5 vatios por amperio MCD5-1200C–MCD5-1600C 4,5 vatios por amperio

Grado de contaminación 3

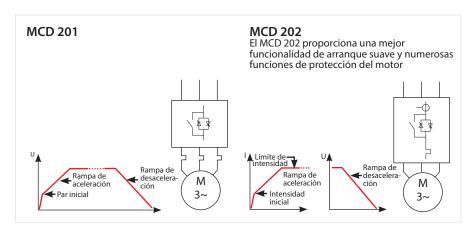
Dimensiones

Intensidad nominal [A]	Peso [kg]	Altura [mm]	Anchura [mm]	Profundidad [mm]	Tamaño del bastidor
21, 37, 43 y 53	4,2			192	
68	4,5	295	156	132	G1B
84, 89 y 105	4,9			223	
131	14				
141	14,2	438	282	250	G2B
195 y 215	15				
245	26	440	424	200	Cap
331 y 396	29,4	440	424	298	G3B
469 y 525	49				
632 y 744	62,5	640	433	297	G4B
826 y 961	63				
245	23	417	390	284	G3C
360, 380 y 428	36				
595, 619 y 790	39	698	430	302	G4C
927	51				
1200	128,5				
1410	130	750	574	361	G5C
1600	140				

VLT® Compact Starter MCD 200

El VLT® MCD 200 de Danfoss incluye dos familias de arrancadores suaves del rango de potencia de 7,5 a 110 kW.

Esta serie ofrece un montaje sencillo sobre raíl DIN para tamaños de hasta 30 kW, control de arranque/parada de 2 y 3 cables y unas excelentes prestaciones de arranque (4 x I_e durante 6 segundos).


Clasificaciones de arranque pesado a 4x I_e durante 20 segundos.

Compatible con sistemas de potencia en triángulo con conexión a tierra.

Gama de potencias

7,5-110 kW

Características	Ventajas
Planta reducida y tamaño compacto	Ahorra espacio de panel
Bypass integrado	 Minimiza el coste de instalación y elimina la pérdida de potencia Reduce la acumulación de calor. Supone un ahorro en componentes, refrigeración, cableado y mano de obra.
Accesorios avanzados	Mejora la funcionalidad
Los algoritmos de control avanzado de SCR equilibran la forma de onda de salida.	Permite más arranques por hora y acepta más carga
Fácil de usar	Ahorro en coste de puesta en marcha y funcionamiento
Fácil de instalar y de utilizar	Ahorra tiempo
Montaje sencillo sobre raíl DIN para tamaños de hasta 30 kW	Ahorra tiempo y espacio
Fiable	Máximo tiempo de actividad
Protecciones imprescindibles del motor (MCD 202)	Reduce la inversión general del proyecto
Temperatura ambiente máx. de 40 °C sin reducción de potencia	No necesita refrigeración externa ni sobredimensionamiento

Arrancador suave para motores de hasta 110 kW

- Solución integral para el arranque de motores
- Funciones de arranque, parada y protección
- Teclado de programación local y pantalla

Opcional

- Módulos para comunicación en serie:
 - DeviceNet
 - PROFIBUS
 - Modbus RTU
 - PROFINET
 - Modbus TCP
 - EtherNet IP
- Kit de panel remoto
- Software para PC
 - WinMaster
 - USB

Kit de control remoto

Panel remoto y pantalla con salida analógica de 4–20 mA proporcional a la intensidad del motor (MCD 202) Comunicación serie: Modbus/485, ASCII. Software de configuración MCD para PC.

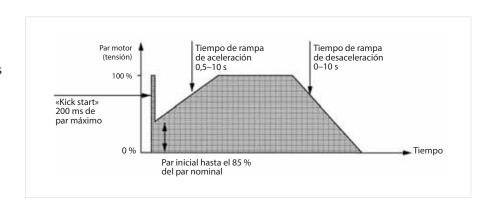
Especificaciones

<u> </u>	
Alimentación de red (L1, L2, L3)	
Tensión de alimentación	3 x 200 V CA – 440 V CA o 3 x 200–575 V CA
Frecuencia de alimentación	45-66 Hz
Tensión de control	110–240 V CA 380–440 V CA 24 V CC / 24 V CA
Entradas de control	
Entradas de control	Arranque, parada Botón de reinicio en la unidad
Salidas de relé	
Salidas de relé	1 contactor principal 1 programmable (desconexión o funcionamiento) (solo MCD 202)
Protecciones, MCD 201	
	Fallo de alimentación
Protecciones: MCD 202	
	Circuito de potencia (fallo de alimentación y SCR) Exceso de tiempo de arranque Sobrecarga del motor: modelo térmico Termistor del motor Desequilibrio de fase Frecuencia de alimentación Rotación de fase: secuencia Comunicaciones de red Comunicaciones del arrancador Sobrecarga de bypass
Indicaciones LED	
marcaciones EED	
Indicaciones	Prep./Fallo En funcionamiento
Indicaciones	
Indicaciones Temperatura ambiente de funcionamiento	En Éuncionamiento De -10 a 60 °C (por encima de 40 °C sin

Tamaños de alojamiento

Rango de potencias (400 V)	7–30 kW	37–55 kW	75–110 kW
Altura [mm]	203	215	240
Anchura [mm]	98	145	202
Profundidad [mm]	165	193	214

VLT® Soft Start Controller MCD 100



El VLT® MCD 100 es un arrancador suave rentable y extremadamente compacto para motores de CA.

Es además un arrancador suave de conexión realmente sencilla para montar sobre raíl DIN, que ofrece una función básica de arranque y paradas suaves.

- Diseño de semiconductor robusto: la selección puede basarse en la potencia del motor, de modo que resulte más sencilla.
- Puede utilizarse para un número prácticamente ilimitado de arranques por hora, sin reducir la potencia.
- Control de tensión universal (24–480 V CA / V CC): simplifica la selección y reduce el inventario al mínimo.
- Diseño de contactor de tipo «ajustar y olvidar», que simplifica la instalación y reduce el espacio necesario para el panel.
- Interruptores giratorios controlados digitalmente que permiten un ajuste preciso y simplifican la instalación.
- Clasificaciones de tareas estándar y pesadas, lo que simplifica la instalación y reduce el riesgo de averías

Características	Ventajas
Planta reducida y tamaño compacto	Ahorra espacio de panel
La selección puede basarse en la potencia del motor	Fácil selección
Tensión de control universal	Simplifica la selecciónMinimiza la necesidad de existencias
Diseño de contactor de tipo «ajustar y olvidar»	Simplifica la instalaciónReduce el espacio de panel necesario
Fácil de usar	Ahorro en coste de puesta en marcha y funcionamiento
Fácil de instalar y de utilizar	Ahorra tiempo
Interruptores giratorios controlados digitalmente	Permite realizar ajustes precisos y simplifica la instalación
Montaje sencillo sobre raíl DIN para tamaños de hasta 30 kW	Ahorra tiempo y espacio
Fiable	Máximo tiempo de actividad
Diseño de semiconductor de gran resistencia	Funcionamiento fiable
Número casi ilimitado de arranques por hora sin reducir la potencia	Impide cambios no autorizados
Temperatura ambiente máxima de 50 °C sin reducción de potencia	No necesita refrigeración externa ni sobredimensionamiento

Rampa de tensión temporizada

- Microcontrolador de arranque suave para motores de hasta 11 kW
- Diseño SCR extremadamente resistente con unas especificaciones estándar para trabajos duros.
- Número ilimitado de arranques por hora
- Diseño de contactor para facilitar la elección, la instalación y la puesta en marcha

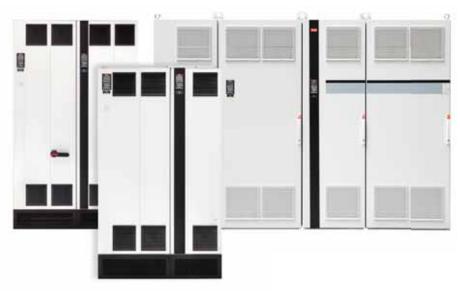
Gama de potencias

MCD	100-001	1,5	kW
MCD	100-007	7,5	kW
MCD	100-011	11	kW

Todos los tamaños son adecuados para las tensiones de línea de hasta 600 V CA.

Especificaciones

Alimentación de red (L1, L2, L3)	
MCD 100	3 x 208 V CA ~ 600 V CA (+10 % / –15 %)
Frecuencia de alimentación (en el arranque)	45 Hz-66 Hz
Circuito de control (A1, A2)	
MCD 100	24 – 480 V CA / V CC (-15% +10%)
Entorno	
Grado de protección del MCD 100	IP 20
Temperaturas de funcionamiento	-5° C/+40° C (60° C con reducción de potencia)
Grado de contaminación	Grado de contaminación 3
Emisión EMC	
Clase de equipo (EMC)	Clase A
Emisión de radiofrecuencia conducida	
0,15 MHz-0,5 MHz	< 90 dB (μV)
0,5 MHz–5 MHz	< 76 dB (μV)
5 MHz-30 MHz	80-60 dB (μV)
Emisión de radiofrecuencia radiada	
30 MHz-230 MHz	< 30 dB (μV/m)
230 MHz-1000 MHz	< 37 dB (μV/m)
F-t dt- b: d- d: d- Cl-	A.F


Este producto ha sido diseñado para equipos de Clase A. El uso del producto en entornos domésticos puede causar interferencias de radio, en cuyo caso el usuario deberá utilizar métodos adicionales para reducir la emisión electromagnética.

Inmunidad EMC	
Descarga electrostática	Descarga de contacto de 4 kV, descarga en aire de 8 kV
Campo electromagnético de radiofrecuencia	
0,15 MHz-1000 MHz	140 dB (μV)
Tensión de impulso no disruptiva nominal (Transitorios rápidos, ráfaga de 5/50 ns)	Línea a tierra de 4 kV
Tensión de aislamiento nominal (sobretensiones de 1,2/50 μs–8/20 μs)	Línea a tierra de 4 kV , entre fases de 2 kV
Caída de tensión e interrupción breve	100 ms (a una tensión nominal del 40 %)
Cortocircuito	
Intensidad del cortocircuito nominal de MCD 100-001	Fusibles normales: 25 A gL/gG
Clasificación SCR I2t para fusibles de semiconductor	72 A2s
Intensidad del cortocircuito nominal MCD 100-007	Fusibles normales: 50 A gL/gG
Clasificación SCR I2t para fusibles de semiconductor	1800 A2s
Intensidad del cortocircuito nominal de MCD 100-011	Fusibles normales: 80 A gL/gG
Clasificación SCR I2t para fusibles de semiconductor	6300 A2s
Disipación de calor	
MCD 100-001	Máx. 4 vatios
MCD 100-007 a MCD 100-011	2 vatios/amperios
Homologaciones normativas	
UL/C-UL	UL508
CE	IEC 60947-4-2

Dimensiones

Modelo	Potencia (kW)	Corriente nominal (amperios)	Dimensiones (mm) alto x ancho. x profundidad	Homologaciones
	1,5	3 A: 5-5:10 (AC 53b)	102 x 22,5 x 124	
MCD 100	7,5	15 A: 8-3: 100-3000 (AC 53a)	110 x 45 x 128	UL, CE
	11	25 A: 6-5:100-480 (AC 53a)	110 x 90 x 128	

VLT® Low Harmonic Drive

El convertidor de frecuencia de bajos armónicos VLT® de Danfoss es la primera solución que combina un filtro activo y un convertidor de frecuencia en un solo paquete.

El convertidor de frecuencia de bajos armónicos VLT® regula de forma continua la supresión de armónicos de acuerdo con las condiciones de carga y red, sin afectar al motor conectado.

La distorsión de corriente armónica total se reduce a menos del 3 % en redes compensadas y con predistorsión mínima y a menos del 5 % en redes de elevada distorsión armónica y con un desequilibrio de fase del 2 %. Dado que los armónicos individuales también cumplen con las exigencias más estrictas en la materia, el convertidor de frecuencia de bajos armónicos VLT® cumple con todas las normas y recomendaciones actuales en cuanto a armónicos.

Funciones exclusivas, como el modo de reposo y la refrigeración de canal posterior, ofrecen una eficiencia energética sin igual para los convertidores de bajos armónicos.

El convertidor de frecuencia de bajos armónicos VLT® necesita el mismo ajuste e instalación que un convertidor de frecuencia estándar VLT® y ofrece un rendimiento armónico óptimo desde el primer momento.

Características	Ventajas			
Fiable	Máximo tiempo de actividad			
Sin aumento de la fatiga del devanado en el motor	 Aumento de la vida útil del motor Menor coste inicial (no se necesita filtro de salida) 			
Probados en fábrica al 100 %PCB barnizadas	Baja tasa de averías			
Innovador concepto de refrigeración	Prolongación de la vida útil de la electrónica.			
Fácil de usar	Ahorro en tiempo de puesta en marcha y coste de funcionamiento			
No hay necesidad de cableado ni configuración adicional	Puesta en marcha sencilla y bajos costes iniciales			
Diseño modular	Mantenimiento fácil			
Lectura de datos completa de las condiciones de red	Reduce la necesidad de pruebas de armónicos			
Ahorro de energía	Menores costes de explotación			
 Alto rendimiento Modo de reposo y frecuencia de conmutación progresiva 	Costes de funcionamiento bajos			
Independiente de la red y de cambios de carga	 Mayor rendimiento del transformador Reducción de las pérdidas en cables 			

El convertidor de frecuencia de bajos armónicos VLT® presenta la misma estructura modular que nuestros convertidores estándar de alta potencia y comparte características similares: filtros RFI incorporados, PCB barnizada y programación sencilla.

Intervalo de tensión

■ 380-480 V CA, 50-60 Hz

Intervalo de potencia

- Sobrecarga alta: 132–630 kW 200–900 CV
- Sobrecarga normal: 160–710 kW 250–1000 CV

Nivel de protección

- IP 21 / NEMA 1
- IP 54 / NEMA 12

Opciones

Están disponibles las opciones siguientes:

- Filtros RFI
- Seccionador
- Fusibles
- Apantallamiento de red
- Realimentación y opciones de E/S
- Opciones de bus de campo
- Filtros dU/dt
- Filtros senoidales

Software para PC

El software VLT® Motion Control Tool MCT 10 ofrece una funcionalidad de programación avanzada para todos los productos de convertidores de frecuencia Danfoss, lo que reduce enormemente la programación y el tiempo de configuración.

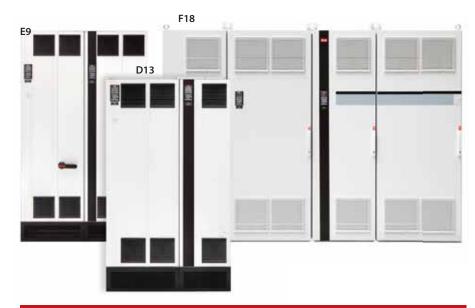
MCT 10 Basic (disponible gratuitamente en <u>www.danfoss.com</u>) permite el acceso a un número determinado de convertidores de frecuencia con funcionalidad limitada.

La edición avanzada, que le ofrece un mayor nivel de funciones, está disponible a través de su distribuidor Danfoss.

Software de cálculo

Con el software VLT® Motion Control Tool MCT31, puede averiguar si los armónicos supondrán algún problema en su instalación al añadir los convertidores de frecuencia.

MCT 31 estima las ventajas de añadir diversas soluciones de reducción de armónicos de la cartera de productos de Danfoss y calcula la distorsión de armónicos del sistema. Además, el software ofrece una indicación rápida de si la instalación cumple con las normas y recomendaciones más importantes en materia de armónicos.


En www.danfoss.com, podrá descargarse la herramienta gratuita MCT 31 (la versión más actualizada del software de cálculo).

Especificaciones

THiD* al: - 40 % de la carga - 70 % de la carga - 100 % de la carga	< 5,5 % < 3,5 % < 3 %
Rendimiento* al: – 40 % de la carga – 70 % de la carga – 100 % de la carga	> 93 % > 95 % > 96 %
Factor de potencia real* al: – 40 % de la carga – 70 % de la carga – 100 % de la carga	> 98 % > 98 % > 98 %
Temperatura ambiente	50 °C sin reducción de potencia (bastidor D, 45 °C)
Refrigeración	Refrigeración de aire de canal posterior

* Medido en red compensada sin predistorsión

The state of the s					
Cumplimiento de normas	y recomendaciones				
IEEE519	Siempre				
IEC 61000-3-2 (hasta 16 A)	Fuera de alcance				
IEC 61000-3-12 (entre 16 y 75 A)	Fuera de alcance				
IEC 61000-3-4 (más de 75 A)	Siempre				

400 V CA (380–460 V CA)										
Sobrecarga normal Sobrecarga alta				a alta		Dimensiones	Peso			
Pote	ncia	Intensidad	Potencia		Intensidad	Bastidor	Alto x ancho x profundidad	resu		
kW	CV	[A]	kW	CV	[A]		IP 21/54	kg	libras	
160	250	315	132	200	260			390	860	
200	300	395	160	250	315	D13	1780 x 1020 x 380 mm 70 x 40 x 15 pulgadas	390	860	
250	350	480	200	300	395		70 X 10 X 13 pargadas	390	860	
315	450	600	250	350	480			676	1491	
355	500	658	315	450	600	E 9	2000 x 1200 x 500 mm	676	1491	
400	625	745	355	500	658	E9	79 x 47 x 19 pulgadas	676	1491	
450	700	800	400	625	695			676	1491	
500	780	880	450	700	800			1899	4187	
560	875	990	500	780	880	F10	2277 x 2800 x 600 mm	1899	4187	
630	985	1120	560	875	990	F18	90 x 110 x 24 pulgadas	1899	4187	
710	1100	1260	630	985	1120			1899	4187	

12-pulse VLT® drive

Una solución armónica sólida y rentable para el intervalo de potencia mayor. El convertidor de frecuencia de 12 pulsos VLT[®] de Danfoss ofrece armónicos reducidos en las exigentes aplicaciones industriales de más de 250 kW.

El convertidor de frecuencia de 12 pulsos VLT® es un convertidor de frecuencia variable de alto rendimiento fabricado con el mismo diseño modular que los populares convertidores de 6 pulsos VLT®. Se presenta con opciones y accesorios de convertidor de frecuencia similares y puede configurarse atendiendo a las necesidades del cliente.

Junto con el transformador desfasador de 30°, la solución proporciona durabilidad y fiabilidad a bajo coste.

En condiciones ideales de red, la solución elimina los armónicos 5.º, 7.º, 17.º y 19.º y consigue una THiD de aproximadamente el 12 % a plena carga.

El transformador necesario hace que esta solución resulte ideal para aplicaciones en las que sea necesario reducir gradualmente la tensión media u obtener aislamiento de la red.

El convertidor de frecuencia de 12 pulsos VLT® de Danfoss proporciona reducción de armónicos sin añadir componentes capacitivos o inductivos, que a menudo requieren un análisis de red para evitar posibles problemas de resonancia en el sistema.

Características	Ventajas
Fiable	Máximo tiempo de actividad
No requiere mantenimiento	Sin costes de funcionamiento
Durabilidad	Larga vida útil
PCB barnizadas	Resistencia a la intemperie
Probados en fábrica al 100 %	Baja tasa de averías
Refrigeración de canal trasero	Prolongación de la vida útil de la electrónica.
Diseño	Funcionamiento y ajuste sencillos
Diseño modular	Mantenimiento fácil
Misma programación sencilla que el convertidor de frecuencia de 6 pulsos	Funcionamiento sencillo
 Panel de control (LCP) de serie galardonado Disponible en 27 idiomas 	Puesta en marcha y funcionamiento eficaces

Intervalo de potencia

■ 250 kW-1,4 MW

Rango de tensión

■ 380-690 V

Protección

- IP 21 / NEMA tipo 1
- IP 54 / NEMA tipo 12

Opciones

Están disponibles las opciones \$siguientes:

- Filtros RFI
- Seccionador
- Fusibles
- Apantallamiento de red
- Realimentación y opciones de E/S
- Opciones de bus de campo
- Filtros dU/dt
- Filtros senoidales

Software para PC

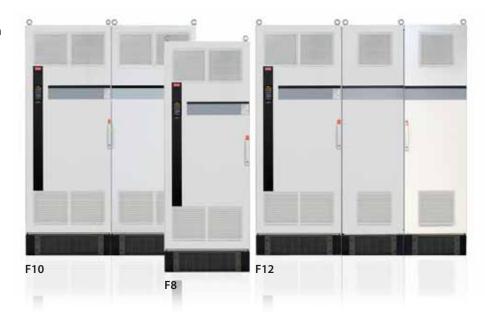
El software VLT® Motion Control Tool MCT 10 ofrece una funcionalidad de programación avanzada para todos los productos de convertidores de frecuencia Danfoss, lo que reduce enormemente la programación y el tiempo de configuración.

MCT 10 Basic (disponible de forma gratuita en <u>www.danfoss.com</u>) da acceso a un número determinado de convertidores de frecuencia con funcionalidad limitada. La edición avanzada, que le ofrece un mayor nivel de funciones, está disponible a través de su distribuidor Danfoss.

Software de cálculo

Con el software VLT® Motion Control Tool MCT 31, puede averiguar si los armónicos supondrán un problema en su instalación al añadir convertidores.

MCT 31 estima las ventajas de añadir diversas soluciones de reducción de armónicos de la cartera de productos de Danfoss y calcula la distorsión de armónicos del sistema.


En <u>www.danfoss.com</u> podrá descargarse la herramienta gratuita MCT 31.

Especificaciones

THiD* al: – 40 % de la carga – 70 % de la carga – 100 % de la carga	20 % 14 % 12 %
Rendimiento* al: – 40 % de la carga – 70 % de la carga – 100 % de la carga	95 % 97 % 98 %
Factor de potencia real* al: – 40 % de la carga – 70 % de la carga – 100 % de la carga	91 % 95 % 97 %
Temperatura ambiente	45 °C sin reducir la potencia
Refrigeración	Refrigeración de aire de canal posterior

* Medido en red compensada sin predistorsión

mediae em ed compensada sin predistorsion						
Cumplimiento de normas	y recomendaciones					
IEEE519	En función de las condiciones de la red y la carga					
IEC 61000-3-2 (hasta 16 A)	Fuera de alcance					
IEC 61000-3-12 (entre 16 y 75 A)	Fuera de alcance					
IEC 61000-3-4 (más de 75 A)	Siempre					

	400	V CA			460 V CA 690 V CA Dimensiones de la			690 V CA		e los bastidores			
Sobre nor	ecarga mal	Sobreca	rga alta		Sobrecarga normal Sobrecarga alta Sobrecarga normal Sobrecarga alta		Sin armario de opciones	Con armario Ode opciones					
Potencia [kW]	Intensi- dad [A]	Potencia [kW]	Intensi- dad [A]	Potencia [CV]	Intensi- dad [A]	Potencia [CV]	Intensi- dad [A]	Potencia [kW]	Intensi- dad [A]	Potencia [kW]	Intensi- dad [A]	Alto x ancho x profundidad IP 21 [mm]	Alto x ancho x profundidad IP 21 [mm]
315	600	250	480	450	540	350	443	450	450	355	380		
355	658	315	600	500	590	450	540	500	500	400	410	F8	F9
400	745	355	658	600	678	500	590	560	570	500	500	2280 x 800 x 607	2280 x 1400 x 607
450	800	400	695	600	730	550	678	630	630	560	570		
500	880	450	800	650	780	600	730	710	730	630	630		
560	990	500	880	750	890	650	780	800	850	710	730	F10	F11 2280 x 2400 x 607
630	1120	560	990	900	1050	750	890	900	945	800	850	2280 x 1600 x 607	
710	1260	630	1120	1000	1160	900	1050						
800	1460	710	1260	1200	1380	1000	1160	1000	1060	900	945	F12	F13
1000	1720	800	1460	1350	1530	1200	1380	1200	1260	1000	1160	2280 x 2000 x 607	2280 x 2800 x 607
								1400	1415	1200	1260		

VLT® Advanced Active Filter AAF 006

Una solución flexible y adaptable para la atenuación de armónicos centralizada o descentralizada.

El filtro activo avanzado VLT® AAF 006 puede compensar un solo convertidor de frecuencia VLT® o instalarse como una solución independiente y compacta en un punto común de acoplamiento, para compensar varias cargas simultáneamente.

En consecuencia, el filtro ofrece una supresión de armónicos óptima, independientemente de la cantidad de cargas y su perfil de carga individual. Además, el filtro activo corrige el factor de potencia y equilibra la carga de fase para aprovechar la energía de manera óptima.

De este modo, mejora la eficiencia del sistema y aumenta la resistencia de la red para evitar interrupciones.

La amplia reutilización de componentes VLT® probados y la estructura modular ofrecen una gran fiabilidad y, al mismo tiempo, gran eficiencia energética, refrigeración de canal trasero y altos grados de protección sin aumentar el tamaño.

El filtro activo avanzado VLT® se controla fácilmente a través del sencillo LCP, y tiene el mismo diseño y la misma estructura de programación que el resto de la serie de convertidores VLT®.

Características	Ventajas
Fiable	Máximo tiempo de actividad
 Probados en fábrica al 100 % PCB barnizadas >90 % componentes reutilizados de la serie VLT® FC. 	Baja tasa de averías
Innovador concepto de refrigeración	Prolongación de la vida útil de la electrónica
Muy fácil de usar y flexible	Ahorro en tiempo de puesta en marcha y coste de funcionamiento
Posibilidades de programación innovadoras	Costes de funcionamiento bajos
Diseño modular	Mantenimiento fácil
Amplia gama de opciones	Baja inversión inicialAlto grado de personalización
Ahorro de energía	Menores costes de explotación
 Alto rendimiento Modo de reposo y frecuencia de conmutación progresiva Corrección del factor de potencia 	Costes de funcionamiento bajos

Sin desmontar la instalación existente, los filtros activos avanzados VLT® se instalan fácilmente en la instalación actual, en la que aumentan los armónicos debido al incremento en el uso de cargas no lineales como, por ejemplo, los convertidores de frecuencia de velocidad variable.

Intervalo de tensión

380-480 V CA, 50-60 Hz

Rango de intensidad

190 A, 250 A, 310 A, 400 A. Pueden conectarse en paralelo hasta 4 unidades para alcanzar una potencia mayor.

Nivel de protección

- IP 21 / NEMA tipo 1
- IP 54 / NEMA tipo 12

Opciones

Están disponibles las opciones siguientes:

- Filtros RFI
- Seccionador
- Fusibles
- Apantallamiento de red

Software para PC

El software VLT® Motion Control Tool MCT 10 ofrece una funcionalidad de programación avanzada para todos los productos de convertidores de frecuencia Danfoss, lo que reduce enormemente la programación y el tiempo de configuración.

MCT 10 Basic (disponible gratuitamente en <u>www.danfoss.com</u>) permite el acceso a un número determinado de convertidores de frecuencia con funcionalidad limitada.

La edición avanzada, que le ofrece un mayor nivel de funciones, está disponible a través de su distribuidor Danfoss.

Software de cálculo

Con el software VLT® Motion Control Tool MCT31, puede averiguar si los armónicos supondrán algún problema en su instalación al añadir los convertidores de frecuencia.

MCT 31 estima las ventajas de añadir diversas soluciones de reducción de armónicos de la cartera de productos de Danfoss y calcula la distorsión de armónicos del sistema. Además, el software ofrece una indicación rápida de si la instalación cumple con las normas y recomendaciones más importantes en materia de armónicos.

En www.danfoss.com, podrá descargarse la herramienta gratuita MCT 31 (la versión más actualizada del software de cálculo).

Especificaciones

THiD* al: – 40 % de la carga – 70 % de la carga – 100 % de la carga	< 7 % < 5,5 % < 5 %
Rendimiento* al: – 40 % de la carga – 70 % de la carga – 100 % de la carga	> 95 % > 98 % > 98 %
Factor de potencia real* al: – 40 % de la carga – 70 % de la carga – 100 % de la carga	> 0,98 > 0,98 > 0,98
Temperatura ambiente	40 °C sin reducción de potencia
Refrigeración	Refrigeración de aire de canal posterior

^{*} Medido en red compensada sin distorsión previa y con convertidor de frecuencia VLT® adaptado a la demanda de carga plena.

Cumplimiento de normas	y recomendaciones
IEEE519	En función de la aplicación y la carga
IEC 61000-3-2 (hasta 16 A)	Fuera de alcance
IEC 61000-3-12 (entre 16 y 75 A)	Fuera de alcance
IEC 61000-3-4 (más de 75 A)	Fuera de alcance

	400 V CA (380–480 V CA)								
Intensidad total [A]	Máx. Reactiva [A]	Máx. armónicos [A]	Bastidor	Dimensiones Alto x ancho x profundidad mm [pulgadas]	Peso kg [libras]				
190	190	170	D14	1780 x 600 x 380 [70 x 24 x 15,0]	238 [525]				
250 310	250 310	225 280	E1	2000 x 600 x 500	429 [945]				
400	400	360	E1	[79 x 24 x 20]	453 [998]				

Intensidad total	Máx. compensación individual de armónicos [A]							
[A]	I ₅	I ₇	I ₁₁	I ₁₃	I ₁₇	I ₁₉	I ₂₃	I ₂₅
190	133	95	61	53	34	34	30	27
250	175	125	80	70	50	45	40	35
310	217	155	99	87	62	56	50	43
400	280	200	128	112	80	72	64	56

VLT® Advanced Harmonic Filter AHF 005/ 010

Rendimiento armónico optimizado con la serie FC hasta 250 kW.

Los filtros armónicos avanzados VLT® AHF 005/010 han sido especialmente diseñados para adaptarse a los convertidores de frecuencia de Danfoss para un rendimiento y diseño sin precedentes.

En comparación con los filtros trampa de armónicos tradicionales, ofrecen una menor huella de carbono y una mayor reducción de armónicos.

La solución está disponible en dos versiones: AHF 005 y AHF 010. Cuando se conectan a un convertidor de frecuencia de Danfoss VLT®, la distorsión de corriente armónica devuelta a la red eléctrica se reduce hasta el 5 % y la distorsión de corriente armónica total disminuye hasta el 10 % a plena carga.

Con un rendimiento >98 %, los filtros armónicos avanzados pasivos ofrecen soluciones rentables y muy resistentes específicamente para el rango de potencia de hasta 250 kW.

Como opciones independientes, los filtros armónicos avanzados presentan una protección compacta que se integra fácilmente en el espacio de panel existente. Esto hace que resulten ideales para aplicaciones de acondicionamiento con ajustes limitados del convertidor de frecuencia.

Características	Ventajas
Fiable	Máximo tiempo de actividad
 Probados en fábrica al 100 % Basados en un concepto de filtro probado y demostrado 	Baja tasa de averías
Ahorro de energía	Menores costes de explotación
 Alto rendimiento Adaptados eléctricamente a cada uno de los convertidores de frecuencia VLT° 	Costes de funcionamiento bajos
Diseño	Protección compacta y estética
 Innovador diseño de bobina Montaje lado a lado Optimizado para su montaje en paneles 	Menor huellaRequiere menos espacio en la pared
Puesta en marcha sencilla	Costes de puesta en marcha bajos
Combinaciones de tamaño de protección y color	Estética Danfoss

Tensión de alimentación

- 380-415 V CA (50 y 60 Hz)
- 440-480 V CA (60 Hz)
- 600 V CA (60 Hz)
- 500-690 V CA (50 Hz)

Intensidad del filtro

- 10 A-480 A (380-415 V CA, 50 y 60 Hz)
- 10 A-436 A (440-480 V CA, 60 Hz)
- 15 A-395 A, 600 V CA, 60 Hz)
- 15 A-395 A (500-690 V CA, 50 Hz)
- (Los módulos pueden colocarse en paralelo para una potencia mayor)

Nivel de protección

- IP 20 / IP 00*
- * Se requiere refrigeración forzada. No hay ventiladores en las unidades IP 00 y se deberá implementar en el alojamiento el flujo de aire necesario.

Opciones

Están disponibles las opciones siguientes:

- Kit IP 21 / NEMA 1
- Kit IP 21 / NEMA 1 con función de desconexión de condensador

Software de cálculo

Con el software VLT® Motion Control Tool MCT 31, puede averiguar si los armónicos supondrán un problema en su instalación al añadir convertidores.

MCT 31 estima las ventajas de añadir diversas soluciones de reducción de armónicos de la cartera de productos de Danfoss y calcula la distorsión de armónicos del sistema. Además, el software ofrece una indicación rápida de si la instalación cumple con las normas y recomendaciones más importantes en materia de armónicos.

En www.danfoss.com, podrá descargarse la herramienta gratuita MCT 31 (la versión más actualizada del software de cálculo).

Especificaciones

	AHF 010	AHF 005			
THiD* al: - 40 % de la carga - 70 % de la carga - 100 % de la carga	~ 12 % ~ 11 % < 10 %	~ 7 % ~ 6 % < 5 %			
Rendimiento* al 100 % de la carga	>98,5 %				
Factor de potencia real* al: – 40 % de la carga – 70 % de la carga – 100 % de la carga	~ 81 % ~ 96 % > 99 %	~ 80 % ~ 95 % > 98 %			
Temperatura ambiente	45 °C sin reducir la potencia				
Refrigeración	Refrigeración de aire de canal posterior				

* Medido en red compensada sin predistorsión

media em pensada sin predistorsion					
Cumplimiento de normas	y recomendaciones				
IEEE519	AHF 005 siempre AHF 010 según las condiciones de la red y la carga				
IEC 61000-3-2 (hasta 16 A)	Siempre				
IEC 61000-3-12 (entre 16 y 75 A)	Siempre				
IEC 61000-3-4 (más de 75 A)	Siempre				

Protecciones

Intensidad nominal AHF [A]									Tipo de	
	415 V Hz		415 V Hz	440- 60	480 V Hz	60 60	0 V Hz		690 V Hz	protec- ción
AHF005 AHF010 AHF005 AHF010 AHF005 AHF01						AHF005	AHF010	AHF005	AHF010	Tipo
			0 4					-		X1
	2				9 5			-		X2
	3- 4- 5-	0		3 3 4	6	15 20				Х3
	66 82			60 73		24 29 36				X4
	9 13			95 118		50 58				X5
	171 204		154 183		77 87 109 128				X6	
251 304	251 304 325 381	251	251 304 325 381	231	231 291 355 380	155 197	155 197 240	155 197	155 197 240	X7
325 381 480	480	304 325 381 480	480	291 355 380 436	436	240 296	296 366 395	240 296	296 366 395	X8

Dimensiones

Duotossión	Dimensiones en mm								
Protección Tipo	LAltura*	Ancho	Profundi- dad						
X1	347	190	206						
X2	451	230	248						
Х3	605	378	242						
X4	634	378	333						
X5	747	418	333						
Х6	778	418	400						
X7	900	468	450						
X8	900	468	515						

Dimensión máxima. La dimensión real depende del concepto de ventilador. Consulte la dimensión real en el manual.

VLT® Common Mode Filters MCC 105

El filtro de núcleo de modo común VLT® MCC 105 reduce las interferencias electromagnéticas y elimina el daño en los cojinetes provocado por las descargas eléctricas.

Los filtros de modo común VLT® MCC 105 (HF-CM) son núcleos magnéticos nanocristalinos especiales que tienen un rendimiento de filtrado superior al de los núcleos de ferrita normales. Actúan como un inductor de modo común (entre fases y tierra).

Instalados alrededor de las tres fases del motor (U, V y W), reducen las intensidades de modo común de alta frecuencia. Con ello, se reduce la interferencia electromagnética de alta frecuencia del cable de motor. Sin embargo, el kit de núcleo no debe usarse como la única medida de mitigación, e incluso cuando se utilizan núcleos, deben seguirse las instrucciones de instalación en cuanto a EMC.

Previene corrientes en los rodamientos del motor

La función más importante es la de reducir las corrientes de alta frecuencia asociadas a las descargas eléctricas en los rodamientos del motor. Estas descargas contribuyen al desgaste prematuro y al fallo de los cojinetes del motor. Reduciendo o incluso eliminado las descargas, se aminora el desgaste de los cojinetes y se amplia su vida útil. De este modo, se disminuyen los costes de mantenimiento y el tiempo de inactividad.

Características	Ventajas
Material magnético nanocristalino de alto rendimiento	 Reducción eficaz de las descargas eléctricas en los cojinetes del motor Reduce el desgaste de los cojinetes, los costes de mantenimiento y el tiempo de inactividad Reduce las interferencias electromagnéticas de alta frecuencia del cable de motor
 Forma ovalada Solución escalable: cables más largos que se manejan apilando más núcleos 	Fácil de instalar en lugares limitados como el alojamiento del VLT® o la caja de terminales del motor
Solo 4 tamaños de núcleo cubren toda la gama de potencias de VLT®	 Logística sencilla, rápida entrega y programa de productos integral Permite ser añadido a un kit de herramientas de mantenimiento
Inversión reducida	Alternativa rentable para, por ejemplo, filtros senoidales si el único fenómeno que debe mitigarse es el de desgaste de los cojinetes por descargas eléctricas

Ideal para la actualización

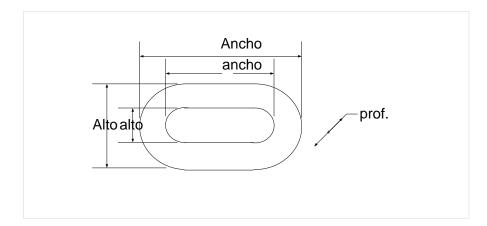
Los problemas de las corrientes en los cojinetes se suelen descubrir tras la puesta en servicio. Por ello, los núcleos tienen una forma oval que los hace idóneos para la actualización y para la instalación en espacios limitados.

Solo 4 variantes abarcan toda la gama de productos VLT® y permiten llevar estos valiosos recursos en un kit de herramientas de mantenimiento.

Una solución flexible

Los núcleos pueden combinarse con otros filtros de salida y, especialmente en combinación con filtros dU/dt, ofrecen una solución de bajo coste para proteger tanto los cojinetes del motor como el aislamiento.

Gama de productos

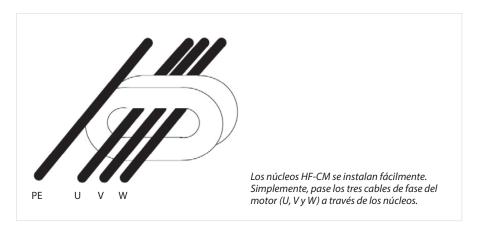

- Disponibles para todas las potencias de 0,18 kW a 1,4 MW
- 4 tamaños de núcleos abarcan todo el rango de potencias de VLT®

Selector HF-CM

Los núcleos pueden instalarse en los terminales de salida del convertidor de frecuencia (U, V y W) o en la caja de terminales del motor. Si se instala en los terminales del convertidor de frecuencia, el kit HF-CM reduce tanto la tensión en el cojinete como las interferencias electromagnéticas de alta frecuencia del cable de motor. El número de núcleos depende de la longitud del cable de motor y de la tensión del convertidor de frecuencia. A la derecha se muestra la tabla de selección:

Longitud de cable	Bastidor A y B		Bastidor C		Bastidor D		Bastidor E y F	
[m]	T5	T7	T5	T7	T5	T7	T5	T7
50	2	4	2	2	2	4	2	2
100	4	4	2	4	4	4	2	4
150	4	6	4	4	4	4	4	4
300*	4	6	4	4	4	6	4	4

^{*} Mayores longitudes del cable se manejan fácilmente apilando más núcleos HF-CM.



Códigos de pedido y dimensiones

En la siguiente tabla encontrará los códigos de pedido de los kits de núcleo (2 núcleos por kit).

VLT® Bastidor	Código de pedido de	Dimensiones del núcleo [mm]					Peso	Dimensiones del paquete
Tamaño	Danfoss	Ancho	ancho	Alto	alto	prof.	[kg]	[mm]
АуВ	130B3257	60	43	40	25	22,3	0,25	190 x 100 x 70
C1	130B7679	82,8	57,5	45,5	20,6	33		
C2, C3, C4	130B3258	102	69	61	28	37	1,6	190 x 100 x 70
Prof.	130B3259	189	143	126	80	37	2,45	235 x 190 x 140
EyF	130B3260	305	249	147	95	37	4,55	290 x 260 x 110

Instalación

VLT® Sine-Wave Filter MCC 101

Los filtros de salida senoidales VLT® MCC 101 son filtros de paso bajo que suprimen el componente de frecuencia de conmutación del convertidor de frecuencia y suavizan la tensión de salida de fase a fase del convertidor de frecuencia para que se convierta en senoidal. Esto reduce la fatiga del aislamiento del motor y las corrientes en los cojinetes.

Los filtros de salida senoidales VLT® MCC 101 son filtros de paso bajo que suprimen el componente de frecuencia de conmutación del convertidor de frecuencia y suavizan la tensión de salida de fase a fase del convertidor de frecuencia para que se convierta en senoidal. Esto reduce la fatiga del aislamiento del motor y las corrientes en los cojinetes.

Al proporcionar al motor una forma de onda senoidal, se elimina también el ruido acústico de conmutación del motor.

Pérdidas térmicas y corrientes de los cojinetes

La tensión de la fuente de alimentación senoidal al motor reduce las pérdidas térmicas por histéresis en el motor. Puesto que la vida útil del aislamiento del motor depende de la temperatura de este, el filtro senoidal prolonga la vida útil del motor.

La tensión senoidal en los terminales del motor obtenida a la salida del filtro senoidal tiene la ventaja de limitar las corrientes de descarga en los cojinetes del motor. Esto reduce el riesgo de descargas disruptivas en los cojinetes del motor y contribuye además a ampliar la vida útil del motor y a incrementar los intervalos de mantenimiento.

Características

Suministra al motor una forma de onda senoidal

Elimina la sobreintensidad y los picos de tensión causados por las reflexiones del cableado Reduce las interferencias electromagnéticas eliminando la reflexión de pulsos causada por el sonido de la corriente en el cable del motor. Esto permite utilizar cables de motor no apantallados en algunas aplicaciones.

Elimina el ruido acústico en el motor

Reduce las pérdidas de frecuente incidencia en el motor

Ventajas

- Impide descargas disruptivas en los devanados del motor
- Protege el aislamiento del motor frente al desgaste prematuro
- Funcionamiento sin incidentes
- Funcionamiento silencioso del motor
- Aumenta el intervalo de mantenimiento del motor

Calidad y diseño

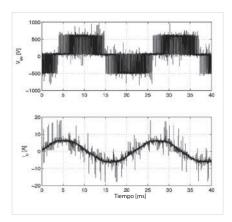
Todos los filtros han sido diseñados y probados para su funcionamiento con los convertidores VLT® Automation-Drive FC 302, VLT® AQUA Drive FC 202, y VLT® HVAC FC 102. Han sido clasificados para la frecuencia de conmutación nominal de la serie VLT® FC y, por esta razón, no se necesita reducción de potencia del convertidor de frecuencia.

La protección se ha diseñado para adaptarse al aspecto y la calidad de los convertidores de frecuencia de la serie VLT® FC.

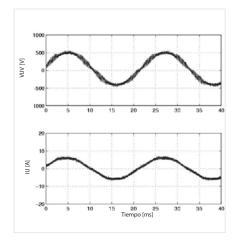
Ventajas

- Compatibilidad con todos los principios de control, incluidos FLUX y VVC+
- Posibilidad de instalar los filtros en paralelo con aplicaciones de la gama de alta potencia

Rango


3 x 200–500 V, 2,5–800 A 3 x 525–690 V, 4,5–660 A

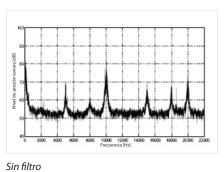
Protecciones

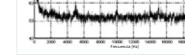

- Protección IP 00 e IP 20 de montaje en pared hasta 75 A (500 V) / 45 A (690 V)
- Protección IP 23 para instalación en suelo desde 115 A (500 V) / 76 A (690 V)

Montaje

 Montaje lado a lado con convertidor de frecuencia de hasta 75 A (500 V) y 45 A (690 V)

Tensión e intensidad sin filtro




Tensión e intensidad con filtro

Especificaciones

Tensión de salida	3 x 200–500 V y 3 x 525–690 V
Intensidad nominal I _N a 50 Hz	2,5–800 A en módulos de alta potencia puede instalarse en paralelo
Frecuencia del motor	0–60 Hz sin reducción de potencia 100/120 Hz (hasta 10 A) con reducción de potencia
Temperatura ambiente	De -25 °C a 45 °C sin reducción de potencia
Frecuencia de conmutación mínima	f _{mín} 1,5 kHz–5 kHz en función del tipo de filtro
Frecuencia de conmutación máxima	f _{máx} 8 kHz
Capacidad de sobrecarga	160 % durante 60 s cada 10 min
Nivel de protección	IP 00 / IP 20 / IP 23 (ref. página 1)
Homologaciones	CE, UL508

Mediciones de presión de sonido relativa del motor con y sin filtro senoidal

Con filtro senoidal

Criterios de rendimiento	Filtros dU/dt	Filtros senoidales
Esfuerzo del aisla- miento del motor	Hasta 100 m de cable (apantallado / no apantallado), cumple con los requisitos de la norma IEC 60034-17* (motores de uso general). Por encima de esta longitud del cable, aumenta el riesgo de «impulsos dobles».	Ofrece una tensión de terminal del motor senoidal de fase a fase. Cumple con los requisitos de las normas IEC-60034-17* y NEMA-MG1 para motores de uso general con cables de hasta 500 m (1 km para el tamaño de bastidor D y superiores).
Esfuerzo de los cojinetes del motor	Se reduce ligeramente, principalmente en motores de alta potencia.	Reduce las corrientes en el cojinete provocadas por las corrientes circulantes. No reduce las corrientes de modo común (corrientes de eje).
Rendimiento de EMC	Elimina el sonido del cable de motor. No cambia la clase de emisiones. No permite cables de motor más largos de lo especificado para el filtro RFI integrado en el convertidor de frecuencia.	Elimina el sonido del cable de motor. No cambia la clase de emisiones. No permite cables de motor más largos de lo especificado para el filtro RFI integrado en el convertidor de frecuencia.
Máxima longitud de cable de motor	100 m–150 m Con rendimiento de EMC garantizado: 150 m apantallado Sin rendimiento de EMC garantizado: 150 m no apantallado	Con rendimiento de EMC garantizado: 150 m apantallado y 300 m no apantallado (solo emisiones conducidas). Sin rendimiento de EMC garantizado: hasta 500 m (1 km para el tamaño de bastidor D y superiores).
Ruido acústico del interruptor del motor	No elimina el ruido acústico de la conmutación del motor.	Elimina el ruido acústico de conmutación del motor provocado por la magnetoestricción.
Tamaño relativo	15–50 % (en función del nivel de potencia)	100 %
Precio relativo	50 %	100 %

^{*}No 690 V

VLT® dU/dt Filter MCC 102

Los filtros dU/dt VLT® MCC 102 reducen los valores dU/dt en la tensión fase a fase del terminal del motor, un aspecto importante para el cableado de motor corto.

Los filtros dU/dt VLT® MCC 102 son filtros de paso bajo de modo diferencial que reducen las tensiones pico entre fases en el terminal del motor y reducen el tiempo de subida a un nivel que disminuye el esfuerzo del aislamiento de los bobinados del motor.

En comparación con los filtros senoidales, los filtros dU/dt tienen una frecuencia de corte por encima de la frecuencia de conmutación. La tensión en los terminales del motor tiene forma de pulso PWM, pero el tiempo de incremento y Upico son menores. Estos filtros son más pequeños, pesan y cuestan menos comparado con los filtros senoidales. Además, debido a la menor inductancia y capacitancia, los filtros dU/dt presentan una reactancia despreciable entre el inversor y el motor y son, por ello, adecuados para aplicaciones altamente dinámicas.

Superior en comparación con bobinas de choque de salida

Las bobinas de choque de salida provocan oscilaciones no amortiguadas en los terminales del motor, lo que aumenta el riesgo de doble impulso y sobretensiones superiores al doble de la tensión del enlace de CC.

Características

Reduce el estrés dU/dt.

Reduce la propagación de interferencias electromagnéticas en los cables y equipos cercanos

Debido a la caída de tensión baja, los filtros dU/ dt resultan ideales para aplicaciones muy dinámicas con regulación del vector de flujo

Los filtros dU/dt son filtros L-C de paso bajo con una frecuencia de corte bien definida. Por ello, se amortiguan las oscilaciones del sonido en los terminales del motor y se reduce el riesgo de impulsos dobles y de picos de tensión.

Calidad y diseño

Todos los filtros dU/dt han sido diseñados y probados para el funcionamiento con los convertidores de frecuencia VLT® AutomationDrive FC 302, VLT® AQUA Drive FC 202 y VLT® HVAC FC 102. Han sido diseñados para adaptarse al aspecto y la calidad de la serie FC.

Ventajas

- Compatibilidad con todos los principios de control, incluidos FLUX y VVC+
- Posibilidad de instalar los filtros en paralelo con aplicaciones de la gama de alta potencia

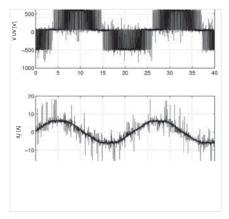
Ventajas

Aumenta el intervalo de mantenimiento del motor

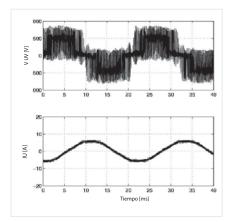
Funcionamiento sin incidentes

Tamaño y coste reducidos en comparación con los filtros senoidales

Rango


3 x 200-690 V (hasta 880 A)

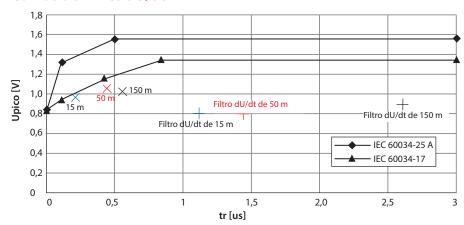
Protecciones


- Protecciones IP 00 e IP 20/23 en toda la gama de potencias
- Protección IP 54 disponible hasta 177 A

Montaje

- Montaje lado a lado con el convertidor de frecuencia
- Filtros de montaje en pared de hasta 177 A (380 V) y de montaje en el suelo con un tamaño superior

Tensión e intensidad sin filtro



Tensión e intensidad con filtro

Especificaciones

Tensión de salida	(3 x 200–690 V)
Intensidad nominal I _N a 50 Hz	44–880 A a 200–380 V, 40–780 A a 460 V 32–630 A a 600 V y 27–630 A a 690 V en módulos de alta potencia puede instalarse en paralelo
Frecuencia del motor	0–60 Hz sin reducción de potencia Máx. 100 Hz (sin reducción de potencia)
Temperatura ambiente	De -25 a 45 °C sin reducción de potencia
Frecuencia de conmutación máxima	f_{sw} 1,5 kHz–4 kHz en función del tipo de filtro
Montaje	Contiguo
Capacidad de sobrecarga	160 % durante 60 s cada 10 min
Nivel de protección	IP 00, IP 20/23 e IP 54
Homologaciones	CE, UL508

Curvas de límite dU/dt

El valor de dU/dt se reduce con la longitud del cable de motor, mientras que la tensión pico aumenta. Por lo tanto, se recomienda utilizar los filtros senoidales en instalaciones con una longitud de cable del motor superior a 150 m.

Criterios de rendimiento	Filtros dU/dt	Filtros senoidales
Esfuerzo del aisla- miento del motor	Hasta 100 m de cable (apantallado / no apantallado), cumple con los requisitos de la norma IEC 60034-17* (motores de uso general). Por encima de esta longitud del cable, aumenta el riesgo de «impulsos dobles».	Ofrece una tensión de terminal del motor senoidal de fase a fase. Cumple con los requisitos de las normas IEC-60034-17* y NEMA-MG1 para motores de uso general con cables de hasta 500 m (1 km para el tamaño de bastidor D y superiores).
Esfuerzo de los cojinetes del motor	Se reduce ligeramente, principalmente en motores de alta potencia.	Reduce las corrientes en el cojinete provocadas por las corrientes circulantes. No reduce las corrientes de modo común (corrientes de eje).
Rendimiento de EMC	Elimina el sonido del cable de motor. No cambia la clase de emisiones. No permite cables de motor más largos de lo especificado para el filtro RFI integrado en el convertidor de frecuencia.	Elimina el sonido del cable de motor. No cambia la clase de emisiones. No permite cables de motor más largos de lo especificado para el filtro RFI integrado en el convertidor de frecuencia.
Máxima longitud de cable de motor	100 m–150 m Con rendimiento de EMC garantizado: 150 m apantallado Sin rendimiento de EMC garantizado: 150 m no apantallado	Con rendimiento de EMC garantizado: 150 m apantallado y 300 m no apantallado (solo emisiones conducidas). Sin rendimiento de EMC garantizado: hasta 500 m (1 km para el tamaño de bastidor D y superiores).
Ruido acústico del interruptor del motor	No elimina el ruido acústico de la conmutación del motor.	Elimina el ruido acústico de conmutación del motor provocado por la magnetoestricción.
Tamaño relativo	15-50 % (en función del nivel de potencia)	100 %
Precio relativo	50 %	100 %

^{*}No 690 V

VLT® Motion Control Tool MCT 10

Optimizado

para:

- Puesta en servicio
- Mantenimiento
- Programación

El software VLT[®] Motion Control Tool MCT 10 es ideal para la puesta en marcha y el mantenimiento del convertidor, incluida la programación guiada del controlador en cascada, el reloj en tiempo real, el controlador Smart Logic y el mantenimiento preventivo.

El software de configuración permite controlar fácilmente los detalles, así como una visión general de los convertidores de frecuencia, ya sean grandes o pequeños. La herramienta maneja todas las series de convertidores de frecuencia, filtros activos avanzados VLT° y datos relacionados con el arrancador suave VLT°.

Organización del mantenimiento más eficaz

- Ámbito y registro: analizar problemas fácilmente
- Lectura de alarmas, advertencias y registro de fallos de un vistazo.
- Comparar el proyecto guardado con un convertidor de frecuencia en línea.
- Actualizar convertidor de frecuencia o firmware opcional. Una herramienta para todos los convertidores
- Asistente de conversión adecuado para actualizar VLT® 5000 a FC 302

Puesta en marcha más eficiente

- Puesta en marcha sin conexión, en otro lugar.
- Guardado/transmisión/envío de proyectos a cualquier lugar
- Fácil manejo del bus de campo, varios convertidores de frecuencia en archivo de proyecto escalables al tamaño de la aplicación.

Características	Ventajas
Una sola herramienta de PC para todas las tareas	Ahorro de tiempo
Vista similar a un explorador	Fácil de usar
Programación de opciones	Ahorro de tiempo
Puesta en marcha en línea y sin conexión	Flexible y económico
Ámbito y registro	Análisis sencillo y rápido con menores tiempos de parada
Histórico de alarmas	Búsqueda de fallos sencilla
Varias interfaces	Fácil de conectar
Conexión USB	Fácil de conectar
Conexión Ethernet flexible	Conexión sencilla: ahorra tiempo (aprovecha todas las opciones de bus de campo de Danfoss basadas en Ethernet). Conexión remota, también en diferentes subredes.

Versión básica

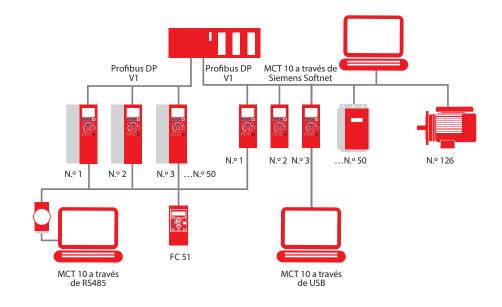
- Puesta en marcha sin conexión (máx. 4 convertidores)
- Ámbito y gráfico (máx. 2 canales).
- Compatibilidad con varios buses de campo
- Histórico de alarmas en proyectos archivados
- Compatible con MCO 305
- Controlador Smart Logic (SLC) gráfico
- Funciones de reloj gráfico, acciones temporizadas, mantenimiento preventivo y controlador básico de cascada (solo FC 102 / FC 202)
- Actualizar compatibilidad de convertidor de frecuencia para admitir nuevo firmware (compatible con versiones futuras)
- Conversión de convertidor de frecuencia FC (series FC 102 / FC 202 y FC 300)

Versión avanzada

- Funciones de versión básica +.
- Número ilimitado de convertidores de frecuencia
- Ámbito y gráfico (máx. 8 canales)
- Registro en tiempo real desde el convertidor de frecuencia
- Base de datos del motor
- Control de bomba sin sensor gráfico
- Controlador en cascada ampliado gráfico (solo FC 202)
- Compatibilidad con creación de archivos CSIV y carga de archivos CSIV, SAS, SPLASH y de idioma al convertidor de frecuencia
- Compatibilidad con protección por contraseña de todo el convertidor de frecuencia
- Compatibilidad con configuración de las opciones de seguridad funcionales

Buses de campo

- PROFIBUS DP-V1
- RS485
- USB
- EtherNet-TSC


Descarga de Internet

Para obtener más información y descargar la versión básica gratuita, visite:

http://www.danfoss.com/drives

Requisitos del sistema

- MS Windows® NT 4.0, 2000, XP, Vista 7 y 8
- Pentium III a 350 MHz o superior
- 512 MB de RAM o superior
- 200 MB de espacio libre en disco duro
- Unidad CD-ROM
- Adaptador gráfico VGA o XGA

VLT® Motion Control Tool MCT 31

Optimizado

para:

- Simulaciones específicas de cada aplicación
- Diversas fuentes de alimentación
- Indicación conforme a la norma
- Documentación del proyecto

Con el software VLT® Motion Control Tool MCT 31, puede averiguar si los armónicos supondrán algún problema en su instalación al añadir los convertidores de frecuencia. MCT 31 estima las ventajas de añadir diversas soluciones de reducción de armónicos de la cartera de productos de Danfoss y calcula la distorsión de armónicos del sistema.

Ahorre dinero y reduzca costes de explotación

Es mejor prevenir que curar, por eso, es preferible calcular el efecto de la instalación de cargas no lineales antes de instalarlas, para elaborar una estimación del grado de distorsión armónica que puede producirse.

Danfoss ofrece como ayuda la herramienta VLT® MCT 31, que se puede descargar gratuitamente: un software fácil de usar y rápido para calcular la distorsión de armónicos en sus instalaciones actuales o previstas de convertidores de frecuencia.

Es vital la realización de una evaluación precisa, ya que, en este caso, es equivocado pensar que «cuanto más, mejor», puesto que esto solo se traduce en un precio más elevado. El MCT 31 puede ayudarle a ahorrar dinero a la hora de seleccionar las soluciones de mitigación de armónicos.

Solamente por el hecho de elegir una solución excesiva para mitigar los armónicos, puede aumentar innecesariamente los costes iniciales y los gastos de explotación.

Características	Ventajas
Vista similar a un explorador	Fácil de usar
Modelo de simulación simple con menos parámetros	Simulación fácil de usar y rápida, para ahorrar tiempo
Configurable para diferentes fuentes de alimentación	Se adapta a todas las necesidades de los clientes
Una sola herramienta para todas las soluciones de mitigación de armónicos de Danfoss	Se adapta a todas las necesidades de los clientes
Indicación configurable de conformidad con la norma	Ahorro de tiempo
Informes configurables por el usuario	Documentación del proyecto.
Simula la configuración antes de la instalación	Ahorra tiempo y dinero. Evita que aparezcan problemas más adelante.

Cálculo de la distorsión de armónicos

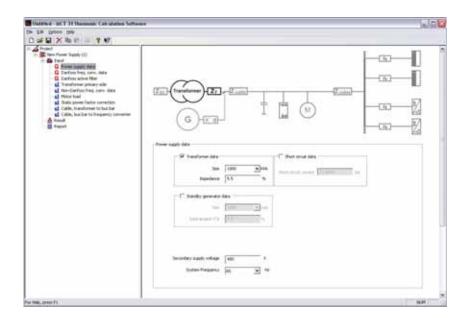
La herramienta MCT 31 puede utilizarse fácilmente para evaluar la calidad de la red e incluye una serie de medidas pasivas y activas para reducir la fatiga del sistema.

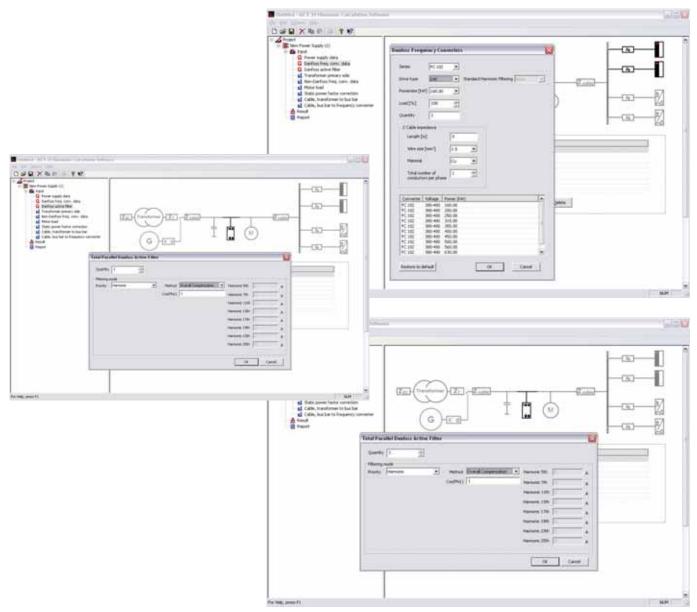
El impacto de la calidad de la potencia de los dispositivos electrónicos puede estimarse hasta una frecuencia máxima de 2,5 kHz, en función de la configuración del sistema y los límites estándar.

El análisis incluye la indicación del cumplimiento de varias normas y recomendaciones.

La herramienta MCT 31 tiene una interfaz similar a la de Windows, por lo que su uso resulta muy intuitivo. El software se ha diseñado pensando en la comodidad del usuario y, para evitar que sea demasiado complicado, solo incluye los parámetros del sistema a los que se suele acceder.

Se incluyen el convertidor de frecuencia Danfoss VLT® y el equipo de mitigación, que se puede configurar sin conexión.


Su asesor local de Danfoss estará encantado de ofrecerle toda la ayuda que necesite para evaluar la calidad de su potencia y aconsejarle en la selección de la correcta mitigación en función de sus circunstancias.


Descarga de Internet

Para obtener más información y para descargar el software MCT 31, visite: http://www.danfoss.com/drives

Requisitos del sistema

- MS WindowsR NT 4.0, 2000, XP, Vista o 7
- Pentium III a 350 MHz o superior
- 512 MB de RAM o superior
- 200 MB de espacio libre en disco duro
- Unidad CD-ROM
- Adaptador gráfico VGA o XGA

VLT® Energy Box

Optimizado

para

- Diseñar instalaciones HVAC
- Ahorrar energía
- Calcular el tiempo de amortización

Con el software VLT[®] Energy Box, puede estimar el ahorro energético en una etapa temprana del proyecto. Más adelante, puede comparar las estimaciones fácilmente con el ahorro de energía y la reducción de la huella de carbono reales, utilizando los datos de energía y tendencias almacenados en el convertidor de frecuencia.

VLT® Energy Box efectúa cálculos de consumo energético y comparaciones de aplicaciones de ventiladores, bombas y torres de refrigeración accionados por convertidores VLT® HVAC de Danfoss y los compara con métodos alternativos de control de caudal.

El programa compara los costes totales de funcionamiento de los diferentes sistemas tradicionales en comparación con el funcionamiento del mismo sistema con un convertidor VLT® HVAC.

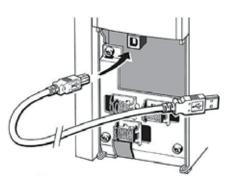
Con el software VLT® Energy Box, puede estimar el ahorro energético en una etapa temprana del proyecto. Más adelante, puede comparar las estimaciones fácilmente con el ahorro de energía y la reducción de la huella de carbono reales, utilizando los datos de energía y tendencias almacenados en el convertidor de frecuencia.

El VLT® Energy Box se comunica con los convertidores de frecuencia a través del puerto USB/RS485 y puede leer todos los datos de ciclos de trabajo y consumos de energía.

Los datos sobre ciclos de trabajo y consumos de energía pueden descargarse desde el convertidor VLT® HVAC, lo que facilita el control de su

Características	Ventajas
Ahorro estimado	 Facilita la decisión de las compras
Calcula el tiempo de amortización según las inversiones y los costes anuales	- Información económica general
Genera un informe	 Comunicación sencilla
Modo de torre de refrigeración especial en función de los datos climáticos	– Cálculo sencillo
Posibilidad de ajustar la región climática a las condiciones locales	 Cálculos más precisos
Descarga de datos de energía del convertidor de frecuencia a través de la comunicación serie y USB	 Facilita la función de amortización del convertidor de frecuencia Visualiza el perfil de carga real
Abarca varios proyectos y sistemas en el mismo archivo	- Generación de informe común de proyecto

ahorro energético y del rendimiento de la inversión. El control mediante bus de campo suele hacer innecesarios los sistemas de medición de energía.


El software le permite descargar datos de energía y tendencias del convertidor de frecuencia e, incluso, crear un solo informe del ahorro energético total, si tiene varios convertidores en el mismo sistema.

Análisis económico completo

VLT® Energy Box ofrece un análisis económico completo, con:

- Costes iniciales del sistema del convertidor y del sistema alternativo
- Gastos de instalación y equipos físicos

- Costes anuales de mantenimiento e incentivos de las empresas de servicios públicos para la instalación de productos de conservación de la energía
- Cálculo del tiempo obtenido y del ahorro y la huella de carbono acumulados

Sin tonterías

Puesto que la VLT® Energy Box estima y compara posteriormente la estimación con el ahorro real de energía, es un medio muy fiable para calcular proyectos con muchos ventiladores, bombas y torres de refrigeración. Solo tiene que instalar un único convertidor de frecuencia VLT® HVAC y comprobar el ahorro real para calcular exactamente las ventajas de instalar convertidores de frecuencia VLT® HVAC en el resto de las aplicaciones.

Descarga de Internet

Este software puede descargarse gratuitamente de: http://www.danfoss.com/drives

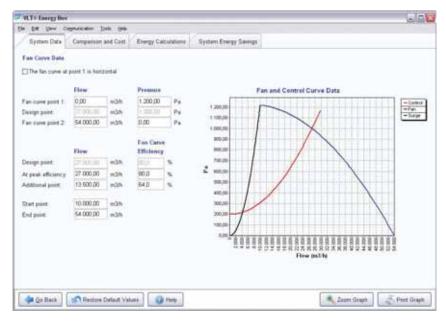
Requisitos del sistema

- Windows XP, Vista, 7 u 8
- 512 MB de RAM o superior
- VGA o superior con una resolución mínima de 1024 x 768
- 30 MB de espacio libre en el disco duro

Tiene en cuenta las condiciones locales

VLT® Energy Box emplea los datos atmosféricos locales para efectuar los cálculos de las torres de refrigeración.

Los datos de las zonas climáticas de todo el planeta vienen ya instalados, pero el usuario puede ajustarlos libremente según las condiciones locales.


Especifica la curva

Energy Box ofrece un modo avanzado para especificar la curva del ventilador o de la bomba con más detalle. La curva (del equipo) del ventilador o de la bomba puede ajustarse para adaptarla a casi cualquier forma. Escoja los puntos de caudal y presión para generar una curva de equipo similar a la curva publicada del ventilador o de la bomba en la sección correspondiente de la curva, empleando el método de control de caudal mecánico.

El programa no permite realizar cálculos en regiones extremas o que se hallan más allá del extremo de la curva.

Servicio VLT® VLT® DrivePro™ Paquetes de servicio LifeCycle

VLT® DrivePro™ Plus

El paquete Plus ofrece un programa de asistencia para que los clientes experimenten una mejora de la disponibilidad y la fiabilidad del convertidor de frecuencia.

Características

- Mantenimiento preventivo
- Formación estándar
- Línea de atención telefónica las 24 horas
- Tiempo de respuesta de 24 horas
- Asistencia in situ

VLT® DrivePro™ Premium

Nuestro programa Premium proporciona una combinación de recursos de asistencia básicos y avanzados destinados a prolongar la vida útil de los convertidores de frecuencia y garantizar un rendimiento económico óptimo.

Características

- Mantenimiento preventivo
- Formación estándar planificada
- Línea de atención telefónica las 24 horas
- Tiempo de respuesta de 6 horas
- Asistencia in situ (desplazamiento y mano de obra incluidos)
- Arrangue
- Garantía ampliada (almacén)
- Garantía ampliada (in situ)
- Eliminación respetuosa con el entorno

VLT® DrivePro™ Supreme

El paquete Supreme proporciona una asistencia integral para satisfacer sus necesidades de funcionamiento, ayudarle a alcanzar sus métricas comerciales KPI fundamentales y proporcionarle total tranquilidad.

Características

- Mantenimiento preventivo
- Formación específica para el cliente
- Línea de atención telefónica las 24 horas
- Tiempo de respuesta de 6 horas
- Asistencia in situ (desplazamiento y mano de obra incluidos)
- Arrangue
- Garantía ampliada (almacén)
- Garantía ampliada (in situ)
- Eliminación respetuosa con el entorno
- Análisis y encuestas
- Convertidores de frecuencia y piezas de repuesto
- SmartStep
- Almacenamiento y envío de stock
- Stock

VLT® DrivePro™ SmartStep

Actualice y sustituya los equipos de manera proactiva para estar tranquilo

Mejora notable

DrivePro™ SmartStep es un programa de sustitución y actualización integral para aquellos clientes que quieran obtener una eficacia y una rentabilidad óptimas. Es un programa de actualización sencillo que reduce los gastos notablemente y está respaldado por un servicio de asistencia profesional.

Ventajas de DrivePro™ SmartStep

- Programa de asistencia y actualización personalizado
- Plan de sustitución flexible
- Costes fijos

Diseñado para el éxito

- Reducción al mínimo de los gastos de inactividad
- Ampliación de la media de los intervalos de reparación
- Control del presupuesto de mantenimiento
- Eliminación de inversiones inesperadas en equipos

Disponible en áreas de aplicación como:

- Alimentos y bebidas
- HVAC
- CTM (química, textil y materiales)
- Aguas y aguas residuales

Servicio en el que puede confiar en cualquier momento y en cualquier parte del mundo

Ventas y Servicio

Nuestro personal de contacto en todo el mundo le ayuda a optimizar la productividad, mejorar el mantenimiento y controlar los costes.

- Disponibilidad las 24 horas del día, los 7 días de la semana
- Líneas de asistencia directa locales, idioma y existencias locales

La organización de servicios de Danfoss está presente en más de 100 países, preparada para responder en cualquier momento y lugar donde lo necesite, las 24 horas, los 7 días de la semana.

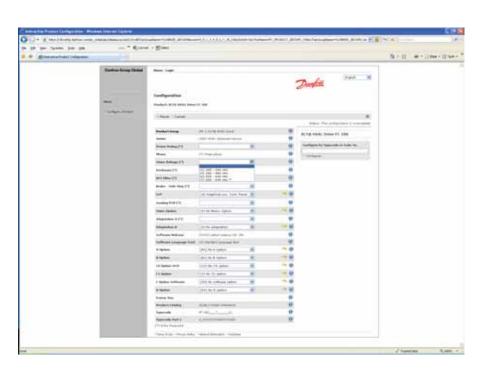
Localice su equipo experto local en www.danfoss.com/spain

Configure su convertidor de frecuencia VLT® para ajustarlo a sus necesidades en http://driveconfig.danfoss.com

El configurador de convertidores de frecuencia le ofrece la posibilidad de configurar (seleccionar) el convertidor de frecuencia apropiado para su propósito. No hace falta que se preocupe de que las combinaciones sean válidas, porque el configurador le indica solo las selecciones válidas.

Configurador de convertidores de frecuencia

El configurador de convertidores de frecuencia es una herramienta avanzada, pero fácil de manejar, para configurar el convertidor de frecuencia VLT® de Danfoss, que se ajusta exactamente a sus requisitos.


El configurador de convertidores de frecuencia genera el número de artículo único del convertidor de frecuencia que necesita. De este modo, evita los posibles errores durante el registro del pedido.

También está disponible la «decodificación»: introduzca un código y el configurador de convertidores de frecuencia descodificará la configuración y mostrará la configuración de su convertidor de frecuencia.

Además, es compatible con la «ingeniería inversa»: introduzca un número de artículo y el configurador de convertidores de frecuencia mostrará la configuración exacta del convertidor de frecuencia en cuestión, incluidas todas las opciones y características especiales. Otra ventaja del uso del configurador de convertidores de frecuencia es que le dice exactamente qué opciones y características están disponibles, para impedir que seleccione combinaciones incoherentes o sin sentido.

Si necesita sustituir un producto obsoleto, introduzca simplemente el número de artículo del VLT® anterior y el configurador de convertidores de frecuencia le ofrecerá los detalles para la sustitución adecuada por una serie más reciente.

Por último, el configurador de convertidores de frecuencia permite un acceso rápido a las piezas de recambio disponibles y a los accesorios, tanto para productos actuales como obsoletos.

Todo sobre VLT®

Danfoss VLT Drives es líder y referente mundial entre los fabricantes de Convertidores de Frecuencia – y todavía creciendo en cuota de mercado.

Protección del medio ambiente

Los productos VLT® se fabrican respetando la seguridad y el bienestar de las personas y del medio ambiente.

Todas las fábricas tienen la certificación ISO 14001 y cumplen las directivas EU para la Seguridad General de Productos ISO 9001.

Todas las actividades se planean y realizan teniendo en cuenta al empleado individual, el lugar de trabajo y el medio ambiente externo. La producción tiene lugar con el mínimo de ruido, humo o cualquier otro tipo de polución, garantizando la eliminación medioambientalmente segura de los productos.

UN Global Compact

Danfoss ha firmado el acuerdo UN Global Compact sobre responsabilidad social y medioambiental y nuestras compañías actúan de forma responsable con las sociedades locales.

Impacto de Productos

Un año de producción de VLT® ahorrará la energía equivalente a una planta de energía por fusión. Mejores procesos de control al mismo tiempo mejoran la calidad de los productos y reducen el mal gasto y desecho de productos.

Dedicados en exclusiva a los convertidores de frecuencia

Dedicación ha sido una palabra clave desde 1968, cuando Danfoss presentó el primer convertidor de frecuencia de velocidad variable para motores de CA producido en masa; y lo llamó VLT®.

Dos mil quinientos empleados desarrollan, fabrican, venden y realizan el mantenimiento de estos convertidores y arrancadores suaves en más de cien países, centrándose únicamente en este tipo de dispositivos.

Inteligente e Innovador

Los diseñadores de Danfoss VLT Drives han adoptado principios totalmente modulares tanto en el desarrollo como en el diseño, producción y configuración de los productos fabricados.

Las funciones del futuro se desarrollan en paralelo utilizando plataformas de tecnología dedicadas. Esto permite que el desarrollo de todos los elementos se lleve a cabo en paralelo, reduciendo así el tiempo de salida al mercado y asegurando que los clientes disfruten siempre de las ventajas de las prestaciones más recientes.

Confianza en los expertos

Nos responsabilizamos de todos los elementos de nuestros productos. El hecho de que desarrollemos y fabriquemos nuestras propias funciones, hardware, software, módulos de alimentación, placas de circuito impreso y accesorios, es su garantía de la fiabilidad de nuestros productos.

Asistencia local, a nivel mundial

Los convertidores de frecuencia VLT® funcionan en aplicaciones a lo largo de todo el mundo, y los expertos de Danfoss VLT Drives están disponibles en más de 100 países listos para dar soporte al cliente, con ayuda en aplicaciones y servicio, siempre que lo necesite.

Los expertos de Danfoss VLT Drives no descansan hasta resolver los retos del convertidor del Cliente.

INGENIEROS ASOCIADOS DE CONTROL, S.L.

Avda. Manoteras, 22 - planta 3º, nave 108 28050 MADRID TIf. 34 91.383.13.90 - Fax. 34 91.383.12.33 www.iac-sl.es // comercial@iac-sl.es

